Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.ORCID-id: 0000-0003-0702-7831
Rekke forfattare: 12019 (engelsk)Inngår i: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 58, nr 15, s. 2028-2038Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain, reducing molecular oxygen to water. The binuclear active site in CcO comprises a high-spin heme associated with a Cu-B complex and a redox active tyrosine. The electron transport in the respiratory chain is driven by increasing midpoint potentials of the involved cofactors, resulting in a release of free energy, which is stored by coupling the electron transfer to proton translocation across a membrane, building up an electrochemical gradient. In this context, the midpoint potentials of the active site cofactors in the CcOs are of special interest, since they determine the driving forces for the individual oxygen reduction steps and thereby affect the efficiency of the proton pumping. It has been difficult to obtain useful information on some of these midpoint potentials from experiments. However, since each of the reduction steps in the catalytic cycle of oxygen reduction to water corresponds to the formation of an O-H bond, they can be calculated with a reasonably high accuracy using quantum chemical methods. From the calculated O-H bond strengths, the proton-coupled midpoint potentials of the active site cofactors can be estimated. Using models representing the different families of CcO's (A, B, and C), the calculations give midpoint potentials that should be relevant during catalytic turnover. The calculations also suggest possible explanations for why some experimentally measured potentials deviate significantly from the calculated ones, i.e., for Cu-B in all oxidase families, and for heme b(3) in the C family.

sted, utgiver, år, opplag, sider
2019. Vol. 58, nr 15, s. 2028-2038
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-169127DOI: 10.1021/acs.biochem.9b00093ISI: 000465189700010PubMedID: 30892888OAI: oai:DiVA.org:su-169127DiVA, id: diva2:1319382
Tilgjengelig fra: 2019-05-31 Laget: 2019-05-31 Sist oppdatert: 2019-05-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Blomberg, Margareta R. A.
Av organisasjonen
I samme tidsskrift
Biochemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 12 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf