Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stokes inversion based on convolutional neural networks
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.
Rekke forfattare: 22019 (engelsk)Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 626, artikkel-id A102Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Context. Spectropolarimetric inversions are routinely used in the field of solar physics for the extraction of physical information from observations. The application to two-dimensional fields of view often requires the use of supercomputers with parallelized inversion codes. Even in this case, the computing time spent on the process is still very large.

Aims. Our aim is to develop a new inversion code based on the application of convolutional neural networks that can quickly provide a three-dimensional cube of thermodynamical and magnetic properties from the interpreation of two-dimensional maps of Stokes profiles.

Methods. We trained two different architectures of fully convolutional neural networks. To this end, we used the synthetic Stokes profiles obtained from two snapshots of three-dimensional magneto-hydrodynamic numerical simulations of different structures of the solar atmosphere.

Results. We provide an extensive analysis of the new inversion technique, showing that it infers the thermodynamical and magnetic properties with a precision comparable to that of standard inversion techniques. However, it provides several key improvements: our method is around one million times faster, it returns a three-dimensional view of the physical properties of the region of interest in geometrical height, it provides quantities that cannot be obtained otherwise (pressure and Wilson depression) and the inferred properties are decontaminated from the blurring effect of instrumental point spread functions for free. The code, models, and data are all open source and available for free, to allow both evaluation and training.

sted, utgiver, år, opplag, sider
2019. Vol. 626, artikkel-id A102
Emneord [en]
Sun: photosphere, Sun: magnetic fields, methods: data analysis, techniques: polarimetric, methods: numerical
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-171114DOI: 10.1051/0004-6361/201935628ISI: 000472130300001OAI: oai:DiVA.org:su-171114DiVA, id: diva2:1343047
Tilgjengelig fra: 2019-08-15 Laget: 2019-08-15 Sist oppdatert: 2019-08-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Díaz Baso, Carlos José
Av organisasjonen
I samme tidsskrift
Astronomy and Astrophysics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf