Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fast likelihood-free cosmology with neural density estimators and active learning
Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Flatiron Institute, USA; Imperial College London, UK.
Rekke forfattare: 42019 (engelsk)Inngår i: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 488, nr 3, s. 4440-4458Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Likelihood-free inference provides a framework for performing rigorous Bayesian inference using only forward simulations, properly accounting for all physical and observational effects that can be successfully included in the simulations, The key challenge for likelihood-free applications in cosmology, where simulation is typically expensive, is developing methods that can achieve high-fidelity posterior inference with as few simulations as possible. Density estimation likelihood-free inference (DELFI) methods turn inference into a density-estimation task on a set of simulated data-parameter pairs, and give orders of magnitude improvements over traditional Approximate Bayesian Computation approaches to likelihood-free inference. In this paper, we use neural density estimators (NDEs) to learn the likelihood function from a set of simulated data sets, with active learning to adaptively acquire simulations in the most relevant regions of parameter space on the fly. We demonstrate the approach on a number of cosmological case studies, showing that for typical problems high-fidelity posterior inference can be achieved with just 0(103) simulations or fewer. In addition to enabling efficient simulation-based inference, for simple problems where the form of the likelihood is known, DELFI offers a fast alternative to Markov Chain Monte Carlo (MCMC) sampling, giving orders of magnitude speed-up in some cases. Finally, we introduce PYDELFI a flexible public implementation of DELFI with NDFs and active learning - available at haps://github.com/justinalsing/pydelfi.

sted, utgiver, år, opplag, sider
2019. Vol. 488, nr 3, s. 4440-4458
Emneord [en]
data analysis: methods
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-174967DOI: 10.1093/mnras/stz1960ISI: 000485158400108OAI: oai:DiVA.org:su-174967DiVA, id: diva2:1364452
Tilgjengelig fra: 2019-10-22 Laget: 2019-10-22 Sist oppdatert: 2019-10-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Alsing, JustinFeeney, Stephen
Av organisasjonen
I samme tidsskrift
Monthly notices of the Royal Astronomical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 6 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf