Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Homological stability for homotopy automorphisms of connected sums of complex projective 3-spaces
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

We study rational homological stability for the classifying space of the monoid of homotopy automorphisms of iterated connected sums of complex projective 3-spaces.

HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-184196OAI: oai:DiVA.org:su-184196DiVA, id: diva2:1458819
Tilgjengelig fra: 2020-08-18 Laget: 2020-08-18 Sist oppdatert: 2022-02-25bibliografisk kontrollert
Inngår i avhandling
1. Formality and rational homotopy theory of relative homotopy automorphisms
Åpne denne publikasjonen i ny fane eller vindu >>Formality and rational homotopy theory of relative homotopy automorphisms
2020 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This PhD thesis consists of four papers treating topics in rational homotopy theory.

In Paper I, we establish two formality conditions in characteristic zero. We prove that a dg Lie algebra is formal if and only if its universal enveloping algebra is formal. We also prove that a commutative dg associative algebra is formal as a dg associative algebra if and only if it is formal as a commutative dg associative algebra. We present some consequences of these theorems in rational homotopy theory.

In Paper II, which is coauthored with Alexander Berglund, we construct a dg Lie algebra model for the universal cover of the classifying space of the grouplike monoid of homotopy automorphisms of a space that fix a subspace, so called relative homotopy automorphisms.

In Paper III, which is coautohored with Hadrien Espic, we prove that the group of homotopy classes of relative homotopy automorphisms of a simply connected finite CW-complex is finitely presented and that the rationalization map from this group to its rational analogue has a finite kernel.

In Paper IV, we study rational homological stability for the classifying space of the monoid of homotopy automorphisms of iterated connected sums of complex projective 3-spaces.

sted, utgiver, år, opplag, sider
Stockholm: Department of Mathematics, Stockholm University, 2020. s. 24
Emneord
rational homotopy theory, formality, relative homotopy automorphisms
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-184205 (URN)978-91-7911-266-0 (ISBN)978-91-7911-267-7 (ISBN)
Disputas
2020-10-23, online via Zoom, public link is available at the department web site, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Tilgjengelig fra: 2020-09-30 Laget: 2020-08-18 Sist oppdatert: 2022-02-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Saleh, Bashar

Søk i DiVA

Av forfatter/redaktør
Saleh, Bashar
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 79 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf