Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-real zeros of polynomials in a polynomial sequence satisfying a three-term recurrence relation
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

This paper discusses the location of zeros of polynomials in a polynomial sequence {P_n(z)} generated by a three-term recurrence relation of the form P_n(z)+B(z)P_{n−1}(z)+A(z)P_{n−k}(z)=0 with k>2 and the standard initial conditions P_0(z)=1,P_{−1}(z)=…=P_{−k+1}(z)=0, where A(z) and B(z) are arbitrary coprime real polynomials. We show that there always exist polynomials in {Pn(z)} with non-real zeros.

Emneord [en]
recurrence relation, polynomial sequence, generating function, lattice paths
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-191106OAI: oai:DiVA.org:su-191106DiVA, id: diva2:1535399
Forskningsfinansiär
Sida - Swedish International Development Cooperation Agency, 316Tilgjengelig fra: 2021-03-08 Laget: 2021-03-08 Sist oppdatert: 2022-02-25bibliografisk kontrollert
Inngår i avhandling
1. Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros
Åpne denne publikasjonen i ny fane eller vindu >>Polynomial Sequences Generated by Linear Recurrences: Location and Reality of Zeros
2021 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, we study the problem of location of the zeros of individual polynomials in sequences of polynomials generated by linear recurrence relations.

In paper I, we establish the necessary and sufficient conditions that guarantee hyperbolicity of all the polynomials generated by a three-term recurrence of length 2, whose coefficients are arbitrary real polynomials. These zeros are dense on the real intervals of an explicitly defined real semialgebraic curve.

Paper II extends Paper I to three-term recurrences of length greater than 2. We prove that there always exist non-hyperbolic polynomial(s) in the generated sequence. We further show that with at most finitely many known exceptions, all the zeros of all the polynomials generated by the recurrence lie and are dense on an explicitly defined real semialgebraic curve which consists of real intervals and non-real segments. The boundary points of this curve form a subset of zero locus of the discriminant of the characteristic polynomial of the recurrence.

Paper III discusses the zero set for polynomials generated by three-term recurrences of lengths 3 and 4 with arbitrary polynomial coefficients. We prove that except the zeros of the polynomial coefficients, all the zeros of every generated polynomial lie on an explicitly defined real semialgebraic curve.

Paper IV extends the results in paper III and generalizes a conjecture by K. Tran [2]. We consider a three-term recurrence relation of any length whose coefficients are arbitrary complex polynomials and prove that with the exception of the zeros of the polynomial coefficients, all the zeros of every generated polynomial lie on a real algebraic curve. We derive the equation of this curve.

Paper V establishes the necessary and sufficient conditions guaranteeing the reality of all the zeros of every polynomial generated by a special five-term recurrence with real coefficients. We put the problem in the context of banded Toeplitz matrices whose associated Laurent polynomial is holomorphic in the punctured plane. We interpret the conditions in terms of the positivity/negativity of the discriminant of a certain polynomial whose coefficients are explicit functions of the parameters in the recurrence.

sted, utgiver, år, opplag, sider
Stockholm: Department of Mathematics, Stockholm University, 2021. s. 35
Emneord
real-rooted polynomials, generating functions, discriminants, Tran's conjecture, Toeplitz matrices
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-191522 (URN)978-91-7911-462-6 (ISBN)978-91-7911-463-3 (ISBN)
Disputas
2021-05-14, sal 14 (Gradängsalen), hus 5, Kräftriket, Roslagsvägen 101 and online via Zoom, public link is available at the department website, Stockholm, 15:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Sida - Swedish International Development Cooperation Agency, 316
Tilgjengelig fra: 2021-04-21 Laget: 2021-03-24 Sist oppdatert: 2022-02-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Ndikubwayo, Innocent

Søk i DiVA

Av forfatter/redaktør
Ndikubwayo, Innocent
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 33 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf