Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A FIRST DIVE INTO THE TERRESTRIAL DEEP‐SEA TRENCHES OF SWEDEN: SPECIES RICHNESS,SPATIOTEMPORAL DISTRIBUTION, AND COMMUNITY COMPOSITION OF A DARK TAXON (DIPTERA:PHORIDAE)
Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen.
Vise andre og tillknytning
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-192273OAI: oai:DiVA.org:su-192273DiVA, id: diva2:1544792
Tilgjengelig fra: 2021-04-16 Laget: 2021-04-16 Sist oppdatert: 2022-02-25bibliografisk kontrollert
Inngår i avhandling
1. A multi-faceted approach to a "dark taxon": The hyperdiverse and poorly known scuttle flies (Diptera: Phoridae)
Åpne denne publikasjonen i ny fane eller vindu >>A multi-faceted approach to a "dark taxon": The hyperdiverse and poorly known scuttle flies (Diptera: Phoridae)
2021 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Most of the unknown animal biodiversity on earth is in groups of invertebrates that are hyperdiverse and abundant, yet poorly known (“dark taxa”). The study of these organisms requires a multi-faceted approach and methodologies designed to tackle large numbers of species and specimens. The scuttle flies (Diptera: Phoridae) are a classic example of a dark taxon and the focus of this thesis. Paper I is a molecular phylogeny of the phorid genus Megaselia based on one nuclear (28S rDNA) and three mitochondrial (ND1, COI and 16S) markers from 145 species of Nordic Megaselia. Molecular data was analysed with Bayesian analysis, maximum likelihood, and parsimony methods. Based on these results, and supporting morphological data, we divide Megaselia into 22 informal species groups, 20 of which fall into a monophyletic “core Megaselia”. We discuss implications for the future circumscription of Megaselia and associated genera. Paper II presents a pipeline for rapid and cost-effective species discovery using the Oxford Nanopore mobile sequencing technology MinION. This paper reveals the presence of ca. 650 species of Phoridae from a single Malaise trap placed in Kibale National Park, Uganda. Based on our data, we estimate that the phorid fauna of the Afrotropical region could be as high as 100 000 species: this figure dwarfs previous diversity estimates. The implications for species discovery and description are discussed, and a new species (Megaselia sepsioides sp. nov.) is described. Paper III outlines a large-scale integrative approach to species discovery and delimitation in hyperdiverse groups, exemplified using a dataset of 18 000 phorid flies from Sweden. COI minibarcodes (313 bp) were obtained for all specimens and classified into putative species using different clustering methods (objective clustering, Poisson tree process, automatic barcode gap discovery and refined single linkage). No clustering method was accurate enough to use for species delimitation without confirmation from additional data. We found that the stability of a cluster to change across genetic-distance thresholds and the genetic variation within a cluster both accurately predict clusters where morphology is likely to be incongruent with barcode data. With molecular clustering integrated with morphological validation, we found that we could examine less than 5% of specimens and still delimit all species fully and accurately. Paper IV addresses questions about the scuttle fly fauna of Sweden with data from 32 000 scuttle flies from 37 sites and 4 time periods. We estimate that the total Swedish fauna contains 652-713 (based on Chao 1 or CNE estimates, respectively) species of scuttle flies, 1.5 times the 372 species currently documented from Sweden. Ordination techniques show that scuttle fly communities are organized in a gradient across Sweden, which is well correlated with plant hardiness zones defined by the Swedish Horticultural Society. Hierarchical modelling of species communities (HMSC) reveals that phorid community composition is largely determined by climatic and temporal variables, but much of the variance remains unexplained by the models we explored. Comparison of our phorid data with that of species more commonly utilised for biodiversity assessments revealed that phorids may allow more fine-scaled analysis as they may exist in smaller ranges, and that they additionally may give unique patterns of distribution that are unlike those seen in other taxa.

sted, utgiver, år, opplag, sider
Stockholm: Department of Zoology, Stockholm University, 2021. s. 43
Emneord
biodiversity, taxonomy, dark taxa
HSV kategori
Forskningsprogram
zoologisk systematik och evolutionsforskning
Identifikatorer
urn:nbn:se:su:diva-192276 (URN)978-91-7911-472-5 (ISBN)978-91-7911-473-2 (ISBN)
Disputas
2021-06-08, online via Zoom, public link is available at the department website, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2021-05-12 Laget: 2021-04-16 Sist oppdatert: 2022-02-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Hartop, Emily

Søk i DiVA

Av forfatter/redaktør
Hartop, Emily
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 229 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf