Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Signed-Error Conformal Regression
School of Business and Informatics, University of Borås.
2014 (engelsk)Inngår i: Advances in Knowledge Discovery and Data Mining: 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014. Proceedings, Part I / [ed] Vincent S. Tseng, Tu Bao Ho, Zhi-Hua Zhou, Arbee L. P. Chen, Hung-Yu Kao, Cham: Springer, 2014, s. 224-236Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper suggests a modification of the Conformal Prediction framework for regression that will strengthen the associated guarantee of validity. We motivate the need for this modification and argue that our conformal regressors are more closely tied to the actual error distribution of the underlying model, thus allowing for more natural interpretations of the prediction intervals. In the experimentation, we provide an empirical comparison of our conformal regressors to traditional conformal regressors and show that the proposed modification results in more robust two-tailed predictions, and more efficient one-tailed predictions.

sted, utgiver, år, opplag, sider
Cham: Springer, 2014. s. 224-236
Serie
Lecture Notes in Artificial Intelligence, ISSN 0302-9743, E-ISSN 1611-3349 ; 8443
Emneord [en]
Conformal Prediction, prediction intervals, regression
HSV kategori
Forskningsprogram
datalogi
Identifikatorer
URN: urn:nbn:se:su:diva-192610DOI: 10.1007/978-3-319-06608-0_19ISBN: 978-3-319-06607-3 (tryckt)ISBN: 978-3-319-06608-0 (digital)OAI: oai:DiVA.org:su-192610DiVA, id: diva2:1547116
Konferanse
18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Tainan, Taiwan, May 13-16, 2014
Tilgjengelig fra: 2021-04-25 Laget: 2021-04-25 Sist oppdatert: 2022-02-25bibliografisk kontrollert
Inngår i avhandling
1. Nonconformity Measures and Ensemble Strategies: An Analysis of Conformal Predictor Efficiency and Validity
Åpne denne publikasjonen i ny fane eller vindu >>Nonconformity Measures and Ensemble Strategies: An Analysis of Conformal Predictor Efficiency and Validity
2021 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Conformal predictors are a family of predictive models that associate with each of their predictions a measure of confidence, enabling them to provide quantitative information about their own trustworthiness. In risk-laden machine learning applications, where bad predictions may lead to economic loss, personal injury, or worse, such inherent quality control appears highly beneficial, if not required. While the foundations of conformal prediction were initially published some twenty years ago, their use, and further development, is still (at the time of writing this thesis) not widespread in the machine learning community, and several open questions remain regarding the proper design and use of conformal prediction systems. In this thesis, we attempt to tackle some of these questions, focusing our attention on three specific characteristics of conformal predictors. First, conformal predictors rely on so-called nonconformity functions, which are mappings from the object space onto the real line, typically based on traditional classification or regression models; here, we investigate properties of the underlying learning algorithm and characteristics of the resulting conformal predictor. Second, conformal predictors output predictions on a form that is distinct from traditional prediction methods, by supplying multi-valued prediction regions with a statistically valid coverage probability; we propose two procedures for post-processing the output from conformal classification models that provide interpretations more closely related to traditional predictive models, while still retaining meaningful confidence information. Finally, we provide contributions relating to the construction of conformal predictor ensembles, illustrating potential issues with existing ensemble procedures, as well as proposing and evaluating an alternative ensemble method.

Abstract [sv]

Avhandlingen behandlar områdetconformal prediction, som beskriver en fa-milj prediktiva modeller vars prediktioner associeras med ett konfidensmått,som låter modellerna själva uttrycka sig om sin egen tillförlitlighet. I hög-riskapplikationer, där dåliga prediktioner kan få allvarliga ekonomiska konse-kvenser, eller leda till personskada, tycks en sådan inbyggd säkerhetskontrollhögst värdefull, om inte nödvändig. Medan den teoretiska grunden till confor-mal prediction lades för cirka 20 år sedan, är forskningsområdet fortfaranderelativt ungt, och många öppna frågor kvarstår gällande design och använd-ning av conformal prediction-system. I avhandlingen behandlas några av des-sa öppna frågor, och fokus läggs på tre specifika karakteristika hos conformal-prediktorer. Först behandlas de så kallade icke-konformitetsfunktionerna (non-conformity functions) som ligger till grund för conformal prediction, och sam-bandet utforskas mellan egenskaper hos icke-konformitetsfunktionerna och deresulterande prediktorerna. även egenskaper hos de prediktioner som produ-ceras i en conformal predictor undersöks, och två post-processeringsmetoderpresenteras i ett försök att bistå med en mer intuitivt begriplig tolkning av des-sa prediktioner. Slutligen utforskas strategier för konstruktion av ensemblerav conformal prediction-modeller, där svagheter illustreras i vedertagna stra-tegier, följt av en presentation av en ny ensemblestrategi som ämnar adresseradessa svagheter.

sted, utgiver, år, opplag, sider
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2021. s. 62
Serie
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 21-001
Emneord
Data Science, Machine Learning, Conformal Prediction, Classification, Regression
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
urn:nbn:se:su:diva-192613 (URN)978-91-7911-502-9 (ISBN)978-91-7911-503-6 (ISBN)
Disputas
2021-06-14, online via Zoom, public link is available at the department website, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2021-05-20 Laget: 2021-04-25 Sist oppdatert: 2022-02-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Linusson, Henrik

Søk i DiVA

Av forfatter/redaktør
Linusson, Henrik

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 146 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf