Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In Silico Structure Predictions for Non-targeted Analysis: From Physicochemical Properties to Molecular Structures
Vise andre og tillknytning
Rekke forfattare: 72022 (engelsk)Inngår i: Journal of the American Society for Mass Spectrometry, ISSN 1044-0305, E-ISSN 1879-1123, Vol. 33, nr 7, s. 1134-1147Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

While important advances have been made in high-resolution mass spectrometry (HRMS) and its applications in non-targeted analysis (NTA), the number of identified compounds in biological and environmental samples often does not exceed 5% of the detected chemical features. Our aim was to develop a computational pipeline that leverages data from HRMS but also incorporates physicochemical properties (equilibrium partition ratios between organic solvents and water; Ksolvent–water) and can propose molecular structures for detected chemical features. As these physicochemical properties are often sufficiently different across isomers, when put together, they can form a unique profile for each isomer, which we describe as the “physicochemical fingerprint”. In our study, we used a comprehensive database of compounds that have been previously reported in human blood and collected their Ksolvent–water values for 129 partitioning systems. We used RDKit to calculate the number of RDKit fragments and the number of RDKit bits per molecule. We then developed and trained an artificial neural network, which used as an input the physicochemical fingerprint of a chemical feature and predicted the number and types of RDKit fragments and RDKit bits present in that structure. These were then used to search the database and propose chemical structures. The average success rate of predicting the right chemical structure ranged from 60 to 86% for the training set and from 48 to 81% for the testing set. These observations suggest that physicochemical fingerprints can assist in the identification of compounds with NTA and substantially improve the number of identified compounds.

sted, utgiver, år, opplag, sider
2022. Vol. 33, nr 7, s. 1134-1147
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-208392DOI: 10.1021/jasms.1c00386ISI: 000821044900001PubMedID: 35649165Scopus ID: 2-s2.0-85132068256OAI: oai:DiVA.org:su-208392DiVA, id: diva2:1691414
Tilgjengelig fra: 2022-08-30 Laget: 2022-08-30 Sist oppdatert: 2022-08-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Martin, Jonathan W.

Søk i DiVA

Av forfatter/redaktør
Martin, Jonathan W.
Av organisasjonen
I samme tidsskrift
Journal of the American Society for Mass Spectrometry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 28 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf