Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Human exposure to phthalate esters via ingestion of municipal drinking water from automatic water purifiers: levels, sources, and risks
Vise andre og tillknytning
Rekke forfattare: 72022 (engelsk)Inngår i: Environmental Science: Water Research & Technology, ISSN 2053-1400, E-ISSN 2053-1419, Vol. 8, nr 12, s. 2843-2855Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The presence of organic pollutants in drinking water is an environmental problem threatening public health. Water purifiers are commonly recognized as effective purification equipment for drinking water and are thus prevalent in the market, so there is a need to assess their true effects on drinking water. In this study, we have analyzed the distribution, potential sources, and health risks of phthalate esters (PAEs) in tap as well as purified water. 7 out of 22 target PAEs have been detected in a total of 75 drinking water samples, including tap water (TW), water vending machines (WVMs), and water boiling machines (WBMs). The total concentrations of 22 PAEs are N.D. to 447 ng L−1 in TW samples, 25.7 to 1.10 × 103 ng L−1 in WBM water, and N.D. to 841 ng L−1 in WVM water. The concentrations of PAEs in most WVM and WBM samples were comparable or slightly higher than those in TW samples. Meanwhile, the ΣPAE concentrations in the nearshore of the Yangtze Estuary area (northern and southern areas) were slightly higher than those from offshore areas (Pudong: PD, Fengxian and Minhang: FM), which may be attributed to the source water. Combining the results of principal component analysis and correlation analysis, certain PAEs, e.g., diisobutyl phthalate (DIBP), dibuthyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), were more polluting than diethyl phthalate (DEP) and di-methyl phthalate (DMP) in WVM water than those in TW samples. This work suggests that the application of water purifiers may not remove certain PAEs efficiently from drinking water. In addition, the estimated daily intakes (EDIs) of ΣPAE via drinking water from automatic water purifiers were 2–3 times those from tap water under a high-exposure scenario, but all EDIs are well below current health regulatory guidelines for PAEs. This survey indicates that water purifiers made nearly no decrease to the PAE concentrations and possibly have negative effects on the quality of drinking water.

sted, utgiver, år, opplag, sider
2022. Vol. 8, nr 12, s. 2843-2855
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-210688DOI: 10.1039/d2ew00535bISI: 000864274300001Scopus ID: 2-s2.0-85141019924OAI: oai:DiVA.org:su-210688DiVA, id: diva2:1709573
Tilgjengelig fra: 2022-11-09 Laget: 2022-11-09 Sist oppdatert: 2023-08-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Bergman, Åke

Søk i DiVA

Av forfatter/redaktør
Bergman, Åke
Av organisasjonen
I samme tidsskrift
Environmental Science: Water Research & Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf