Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Representation theorems for abelian and model categories
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2023 (engelsk)Doktoravhandling, monografi (Annet vitenskapelig)
Abstract [en]

In this PhD thesis we investigate a representation theorem for small abelian categories and a representation theorem for left proper, enriched model categories, with the purpose of describing them concretely in terms of specific well-known categories.

For the abelian case, we study the constructivity issues of the Freyd-Mitchell Embedding Theorem, which states the existence of a full embedding from a small abelian category into the category of modules over an appropriate ring. We point out that a large part of its standard proof doesn't work in the constructive set theories IZF and CZF and in the logical system IHOL. Working constructively, we then define an embedding from a small abelian category into the category of sheaves of modules over a ringed space.

In the context of enriched model categories, we define homotopy enriched tiny objects and we prove that any left proper, enriched model category which is generated by these objects under weak equivalences, homotopy tensor products and homotopy colimits is, under certain extra hypothesis, Quillen equivalent to the enriched presheaf category over these objects. As we show, from our result it is possible to derive Elmendorf's Theorem for equivariant spaces and the Schwede-Shipley Theorem for spectral model categories.

sted, utgiver, år, opplag, sider
Stockholm: Department of Mathematics, Stockholm University , 2023. , s. 254
Emneord [en]
Category Theory, Logic, Algebra, Homotopy Theory
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-215564ISBN: 978-91-8014-248-9 (tryckt)ISBN: 978-91-8014-249-6 (digital)OAI: oai:DiVA.org:su-215564DiVA, id: diva2:1744283
Disputas
2023-05-05, lärosal 22, hus 4, Albano, Albanovägen 12, Stockholm, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-04-12 Laget: 2023-03-17 Sist oppdatert: 2023-03-30bibliografisk kontrollert

Open Access i DiVA

Representation theorems for abelian and model categories(2282 kB)181 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2282 kBChecksum SHA-512
caccae151ce1e0b8d7f9183da4d8d89d5e0f318a4d5e9ddf3c681b204dd4560b83725f77974702de39141a75c20465a5d54e0a0647ee02abbd0ba7160c500b61
Type fulltextMimetype application/pdf

Person

Montaruli, Anna Giulia

Søk i DiVA

Av forfatter/redaktør
Montaruli, Anna Giulia
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 181 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 648 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf