Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Department of Mathematics, Qazvin Branch, Islamic Azad University, Iran.
Rekke forfattare: 22023 (engelsk)Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1, artikkel-id 15141Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective treatments to fight this worldwide concern. Several genes associated with the SARS-CoV-2, which are essential for its functionality, pathogenesis, and survival, have been identified. These genes, which play crucial roles in SARS-CoV-2 infection, are considered potential therapeutic targets. Developing drugs against these essential genes to inhibit their regular functions could be a good approach for COVID-19 treatment. Artificial intelligence and machine learning methods provide powerful infrastructures for interpreting and understanding the available data and can assist in finding fast explanations and cures. We propose a method to highlight the essential genes that play crucial roles in SARS-CoV-2 pathogenesis. For this purpose, we define eleven informative topological and biological features for the biological and PPI networks constructed on gene sets that correspond to COVID-19. Then, we use three different unsupervised learning algorithms with different approaches to rank the important genes with respect to our defined informative features. Finally, we present a set of 18 important genes related to COVID-19. Materials and implementations are available at: https://github.com/MahnazHabibi/Gene_analysis.

sted, utgiver, år, opplag, sider
2023. Vol. 13, nr 1, artikkel-id 15141
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-223226DOI: 10.1038/s41598-023-42127-9ISI: 001067753600005PubMedID: 37704748Scopus ID: 2-s2.0-85171162453OAI: oai:DiVA.org:su-223226DiVA, id: diva2:1809821
Tilgjengelig fra: 2023-11-06 Laget: 2023-11-06 Sist oppdatert: 2025-02-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Taheri, Golnaz

Søk i DiVA

Av forfatter/redaktør
Taheri, Golnaz
Av organisasjonen
I samme tidsskrift
Scientific Reports

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 20 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf