Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gravitational wave spectrum of chain inflation
Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. The University of Texas at Austin, USA.ORCID-id: 0000-0001-9490-020X
Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).ORCID-id: 0000-0003-0896-5213
Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. The University of Texas at Austin, USA.ORCID-id: 0000-0002-4436-0820
2024 (engelsk)Inngår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 110, nr 10, artikkel-id 103526Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Chain inflation is an alternative to slow-roll inflation in which the inflaton tunnels along a large number of consecutive minima in its potential. In this work we perform the first comprehensive calculation of the gravitational wave (GW) spectrum of chain inflation. In contrast to slow-roll inflation the latter does not stem from quantum fluctuations of the gravitational field during inflation, but rather from the bubble collisions during the first-order phase transitions associated with vacuum tunneling. Our calculation is performed within an effective theory of chain inflation which builds on an expansion of the tunneling rate capturing most of the available model space. The effective theory can be seen as chain inflation’s analog of the slow-roll expansion in rolling models of inflation. The near scale-invariance of the scalar power spectrum translates to a quasiperiodic shape of the inflaton potential in chain inflation, with the tunneling rate changing very slowly during the e-folds leading to cosmic microwave background observables. We show that chain inflation produces a very characteristic double-peak GW spectrum: a faint high-frequency peak associated with the gravitational radiation emitted during inflation, and a strong low-frequency peak associated with the graceful exit from chain inflation (marking the transition to the radiation-dominated epoch). There exist very exciting prospects to test the gravitational wave signal from chain inflation at the aLIGO-aVIRGO-KAGRA network, at LISA and /or at pulsar timing array experiments. A particularly intriguing possibility we point out is that chain inflation could be the source of the stochastic gravitational wave background recently detected by NANOGrav, PPTA, EPTA, and CPTA. We also show that the gravitational wave signal of chain inflation is often accompanied by running/ higher running of the scalar spectral index to be tested at future cosmic microwave background experiments.

sted, utgiver, år, opplag, sider
2024. Vol. 110, nr 10, artikkel-id 103526
HSV kategori
Forskningsprogram
fysik
Identifikatorer
URN: urn:nbn:se:su:diva-225359DOI: 10.1103/PhysRevD.110.103526ISI: 001368150900010Scopus ID: 2-s2.0-85210358368OAI: oai:DiVA.org:su-225359DiVA, id: diva2:1828098
Tilgjengelig fra: 2024-01-16 Laget: 2024-01-16 Sist oppdatert: 2025-03-18bibliografisk kontrollert
Inngår i avhandling
1. Why nothing matters: A tale of vacua in the early Universe
Åpne denne publikasjonen i ny fane eller vindu >>Why nothing matters: A tale of vacua in the early Universe
2024 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The paradigm of inflation –  a period of accelerated expansion in the very early Universe –  was introduced to give solutions to a number of problems encountered in Standard Big Bang cosmology. Additionally, due to its quantum nature, inflation is able to generate the necessary primordial inhomogeneity “seeds”, which eventually evolve into large-scale structures. The particular primordial inhomogeneities are imprinted on the Cosmic Microwave Background radiation (CMB) as very small deviations –  temperature fluctuations –  from a perfect blackbody spectrum. If the Standard Model (SM) Higgs is a light spectator field during inflation, it can acquire quantum fluctuations and seed additional, potentially observable, fluctuations. This takes place via an effective breaking of electroweak symmetry at very high energy scales, which results in the reheating process being different in different regions of the Universe. In the first part of the research work, we develop methods for calculating the amplitude, as well as the non-Gaussianity, of such Higgs-induced temperature fluctuations in the CMB. In the case of reheating via resonant inflaton decays to Abelian gauge bosons, we show that the amplitude of the Higgs-induced temperature fluctuations always exceeds the observed value and that, therefore, such decays cannot be the main reheating channel. In the case of reheating via perturbative inflaton decays to SM fermions, we place strong constraints on the relevant SM parameters, using the amplitude of the Higgs temperature fluctuations. By additionally using the associated non-Gaussianity, we are able to strengthen the particular constraints even further. Having made a connection between cosmological observations and SM parameters, such as the Higgs self-coupling, we suggest a way to probe the SM Higgs potential at very high energy scales and constrain New Physics. In the second part of the research work we study a specific inflationary model, known as chain inflation. In particular, we calculate the primordial gravitational wave (GW) signatures produced by chain inflation. We show that the latter can explain the GW stochastic background detected by the International Pulsar Timing Array (IPTA). Finally, we show that GW signatures of chain inflation are detectable both by current and/or by future GW instruments.

sted, utgiver, år, opplag, sider
Stockholm: Department of Physics, Stockholm University, 2024. s. 201
Emneord
inflation, reheating, Higgs, cosmological phase transitions
HSV kategori
Forskningsprogram
teoretisk fysik
Identifikatorer
urn:nbn:se:su:diva-227556 (URN)978-91-8014-723-1 (ISBN)978-91-8014-724-8 (ISBN)
Disputas
2024-05-16, Albano 3: 6228 (Mega room, Nordita), Hannes Alfvéns väg 12 and online via Zoom, public link is available at the department website, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-04-23 Laget: 2024-03-19 Sist oppdatert: 2024-03-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Freese, KatherineLitsa, AlikiWinkler, Martin Wolfgang

Søk i DiVA

Av forfatter/redaktør
Freese, KatherineLitsa, AlikiWinkler, Martin Wolfgang
Av organisasjonen
I samme tidsskrift
Physical Review D: covering particles, fields, gravitation, and cosmology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf