Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classical field approximation of ultralight dark matter: Quantum break times, corrections, and decoherence
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).ORCID-id: 0000-0002-3875-9712
Rekke forfattare: 42024 (engelsk)Inngår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 109, nr 8, artikkel-id 083527Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The classical field approximation is widely used to better understand the predictions of ultralight dark matter. Here, we use the truncated Wigner approximation method to test the classical field approximation of ultralight dark matter. This method approximates a quantum state as an ensemble of independently evolving realizations drawn from its Wigner function. The method is highly parallelizable and allows the direct simulation of quantum corrections and decoherence times in systems many times larger than have been previously studied in reference to ultralight dark matter. Our study involves simulation of systems in 1, 2, and 3 spatial dimensions. We simulate three systems, the condensation of a Gaussian random field in three spatial dimensions, a stable collapsed object in three spatial dimensions, and the merging of two stable objects in two spatial dimensions. We study the quantum corrections to the classical field theory in each case. We find that quantum corrections grow exponentially during nonlinear growth with the timescale being approximately equal to the system dynamical time. In stable systems the corrections grow quadratically. We also find that the primary effect of quantum corrections is to reduce the amplitude of fluctuations on the de Broglie scale in the spatial density. Finally, we find that the timescale associated with decoherence due to gravitational coupling to baryonic matter is at least as fast as the quantum corrections due to gravitational interactions. These results are consistent with the predictions of the classical field theory being accurate.

sted, utgiver, år, opplag, sider
2024. Vol. 109, nr 8, artikkel-id 083527
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-232238DOI: 10.1103/PhysRevD.109.083527ISI: 001224283200003Scopus ID: 2-s2.0-85191859662OAI: oai:DiVA.org:su-232238DiVA, id: diva2:1888583
Tilgjengelig fra: 2024-08-13 Laget: 2024-08-13 Sist oppdatert: 2024-08-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Kopp, Michael

Søk i DiVA

Av forfatter/redaktør
Kopp, Michael
Av organisasjonen
I samme tidsskrift
Physical Review D: covering particles, fields, gravitation, and cosmology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 13 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf