Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model quality assessment for membrane proteins
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
2010 (engelsk)Inngår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 26, nr 24, s. 3067-3074Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Motivation: Learning-based model quality assessment programs have been quite successful at discriminating between high-and low-quality protein structures. Here, we show that it is possible to improve this performance significantly by restricting the learning space to a specific context, in this case membrane proteins. Since these are among the most important structures from a pharmaceutical point-of-view, it is particularly interesting to resolve local model quality for regions corresponding, e. g. to binding sites. Results: Our new ProQM method uses a support vector machine with a combination of general and membrane protein-specific features. For the transmembrane region, ProQM clearly outperforms all methods developed for generic proteins, and it does so while maintaining performance for extra-membrane domains; in this region it is only matched by ProQres. The predictor is shown to accurately predict quality both on the global and local level when applied to GPCR models, and clearly outperforms consensus-based scoring. Finally, the combination of ProQM and the Rosetta low-resolution energy function achieve a 7-fold enrichment in selection of near-native structural models, at very limited computational cost.

sted, utgiver, år, opplag, sider
2010. Vol. 26, nr 24, s. 3067-3074
Emneord [en]
STRUCTURE PREDICTION; GLOBULAR-PROTEINS; FORCE-FIELD; ALIGNMENT; RECOGNITION; ALGORITHM; DISTANCE; REGIONS; PCONS; PROQ
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-51226DOI: 10.1093/bioinformatics/btq581ISI: 000284947700009OAI: oai:DiVA.org:su-51226DiVA, id: diva2:387785
Merknad
authorCount :3Tilgjengelig fra: 2011-01-14 Laget: 2011-01-10 Sist oppdatert: 2017-12-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Ray, ArjunLindahl, ErikWallner, Björn
Av organisasjonen
I samme tidsskrift
Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 39 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf