Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stabilization of the GluCl Ligand-Gated Ion Channel in the Presence and Absence of Ivermectin
Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Vise andre og tillknytning
2013 (engelsk)Inngår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 105, nr 3, s. 640-647Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Improving our understanding of the mechanisms and effects of anesthetics is a critically important part of neuroscience. The currently dominant theory is that anesthetics and similar molecules act by binding to Cys-loop receptors in the postsynaptic terminal of nerve cells and potentiate or inhibit their function. Although structures for some of the most important mammalian channels have still not been determined, a number of important results have been derived from work on homologous cationic channels in bacteria. However, partly due to the lack of a nervous system in bacteria, there are a number of questions about how these results relate to higher organisms. The recent determination of a structure of the eukaryotic chloride channel, GluCl, is an important step toward accurate modeling of mammalian channels, because it is more similar in function to human Cys-loop receptors such as GABA(A)R or GlyR. One potential issue with using GluCl to model other receptors is the presence of the large ligand ivermectin (IVM) positioned between all five subunits. Here, we have performed a series of microsecond molecular simulations to study how the dynamics and structure of GluCl change in the presence versus absence of IVM. When the ligand is removed, subunits move at least 2 angstrom closer to each other compared to simulations with IVM bound. In addition, the pore radius shrinks to 1.2 angstrom, all of which appears to support a model where IVM binding between subunits stabilizes an open state, and that the relaxed nonIVM conformations might be suitable for modeling other channels. Interestingly, the presence of IVM also has an effect on the structure of the important loop C located at the neurotransmitter-binding pocket, which might help shed light on its partial agonist behavior.

sted, utgiver, år, opplag, sider
2013. Vol. 105, nr 3, s. 640-647
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-93570DOI: 10.1016/j.bpj.2013.06.037ISI: 000323141100014OAI: oai:DiVA.org:su-93570DiVA, id: diva2:647477
Merknad

AuthorCount:5;

Funding Agencies:

European Research Council  209825;  Swedish Research Council  2010-491,  2010-5107;  Foundation for Strategic Research;   Swedish e-Science Research Center  

Tilgjengelig fra: 2013-09-11 Laget: 2013-09-10 Sist oppdatert: 2022-02-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Lindahl, Erik

Søk i DiVA

Av forfatter/redaktør
Lindahl, Erik
Av organisasjonen
I samme tidsskrift
Biophysical Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 41 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf