Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila
Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen.ORCID-id: 0000-0002-9190-6873
Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen.
Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen.ORCID-id: 0000-0002-1147-7766
2013 (engelsk)Inngår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 353, nr 3, s. 511-523Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Four forms of short neuropeptide F (sNPF1-4), derived from the gene snpf, have been identified in Drosophila and are known to act on a single G-protein-coupled receptor (sNPFR). Several functions have been suggested for sNPFs in Drosophila, including the regulation of feeding and growth in larvae, the control of insulin signalling and the modulation of neuronal circuits in adult flies. Furthermore, sNPF has been shown to act as a nutritional state-dependent neuromodulator in the olfactory system. The role of sNPF in the larval nervous system is less well known. To analyse sites of action of sNPF in the larva, we mapped the distribution of sNPF- and sNPFR-expressing neurons. In particular, we studied circuits associated with chemosensory inputs and systems involved in the regulation of feeding, including neurosecretory cell systems and the hypocerebral ganglion. We employed a combination of immunocytochemistry and enhancer trap and promoter Gal4 lines to drive green fluorescent protein. We found a good match between the distribution of the receptor and its ligand. However, several differences between the larval and adult systems were observed. Thus, neither sNPF nor its receptor was found in the olfactory (or other sensory) systems in the larva and cells producing insulin-like peptides did not co-express sNPFR, as opposed to results from adults. Moreover, sNPF was expressed in a subpopulation of Hugin cells (second-order gustatory neurons) only in adult flies. We propose that the differences in sNPF signalling between the developmental stages is explained by differences in their feeding behaviour.

sted, utgiver, år, opplag, sider
2013. Vol. 353, nr 3, s. 511-523
Emneord [en]
Larvae, Central nervous system, sNPF receptor, Feeding, Olfaction, Drosophila melanogaster
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-94024DOI: 10.1007/s00441-013-1660-4ISI: 000323620800015OAI: oai:DiVA.org:su-94024DiVA, id: diva2:651798
Merknad

AuthorCount:3;

Tilgjengelig fra: 2013-09-27 Laget: 2013-09-24 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Carlsson, Mikael A.Enell, Lina E.Nässel, Dick R.
Av organisasjonen
I samme tidsskrift
Cell and Tissue Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 259 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf