Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för tillämpad miljövetenskap (ITM).
Vise andre og tillknytning
2013 (engelsk)Inngår i: Journal of Geophysical Research: Atmospheres, ISSN 2169-897X, Vol. 118, nr 19, s. 11327-11338Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Atmospheric organic aerosol concentrations depend in part on the gas-particle partitioning of primary organic aerosol (POA) emissions. Consequently, heating and dilution were used to investigate the volatility of biomass-burning smoke particles from combustion of common North American trees/shrubs/grasses during the third Fire Lab at Missoula Experiment. Fifty to eighty percent of the mass of biomass-burning POA evaporated when isothermally diluted from plume- (~1000 µg m−3) to ambient-like concentrations (~10 µg m−3), while roughly 80% of the POA evaporated upon heating to 100°C in a thermodenuder with a residence time of ~14 sec. Therefore, the majority of the POA emissions were semivolatile. Thermodenuder measurements performed at three different residence times indicated that there were not substantial mass transfer limitations to evaporation (i.e., the mass accommodation coefficient appears to be between 0.1 and 1). An evaporation kinetics model was used to derive volatility distributions and enthalpies of vaporization from the thermodenuder data. A single volatility distribution can be used to represent the measured gas-particle partitioning from the entire set of experiments, including different fuels, organic aerosol concentrations, and thermodenuder residence times. This distribution, derived from the thermodenuder measurements, also predicts the dilution-driven changes in gas-particle partitioning. This volatility distribution and associated emission factors for each fuel studied can be used to update emission inventories and to simulate the gas-particle partitioning of biomass-burning POA emissions in chemical transport models.

sted, utgiver, år, opplag, sider
2013. Vol. 118, nr 19, s. 11327-11338
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-101759DOI: 10.1002/jgrd.50828ISI: 000330266700034OAI: oai:DiVA.org:su-101759DiVA, id: diva2:705886
Merknad

AuthorCount:9;

Research funders:

National Park Service;  Joint Fire Science Program; EPA STAR program through the National Center for Environmental Research (NCER) R833747, R834554;  DOE (BER, ASR program) DE-SC0006035; United States Environmental Protection Agency  

Tilgjengelig fra: 2014-03-18 Laget: 2014-03-14 Sist oppdatert: 2014-03-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Riipinen, Ilona
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 37 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf