Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ekedahl Invariants, Veronese Modules and Linear Recurrence Varieties
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The title of this thesis refers to the three parts of which it is composed.

The first part concerns the Ekedahl Invariants, new geometric invariants for finite groups introduced in 2009 by Torsten Ekedahl. In Papers A and B, I prove that if G is a subgroup of the three dimensional general linear group over the complex numbers, then the class of its classifying stack is trivial in the Kontsevich value ring of algebraic varieties. This implies that such groups have trivial Ekedahl invariants. If G is a subgroup of the n-dimensional general linear group (over the complex numbers) with abelian reduction in the respective projective linear group, then I show that the Ekedahl invariants satisfy a recurrence relation in a Grothendieck type structure. This relation involves certain cohomologies of the resolution of the singularities of the quotient scheme of the projective space Pn-1 modulo the canonical G action. Finally, I prove that the fifth discrete Heisenberg group has trivial Ekedahl invariants.

The second part of this work focuses on the Veronese modules (Paper C). We extend the results of Bruns and Herzog (about the square free divisor complex) and Paul (about the pile simplicial complex) to the Veronese embeddings and the Veronese modules. We also prove a closed formula for their Hilbert series. Using these results, we study the linearity of the resolution, we characterize when the Veronese modules are Cohen-Macaulay and we give explicit examples of Betti tables of Veronese embeddings.

In the last part of the thesis (Paper D) we prove the existence of linear recurrences of order M with a non-trivial solution vanishing exactly on a subset of the gaps of a numerical semigroup S finitely generated by a1, a2, ..., aN-1, M. This relates to the recent study of linear recurrence varieties by Ralf Fröberg and Boris Shapiro.

sted, utgiver, år, opplag, sider
Stockholm: Department of Mathematics, Stockholm University , 2014. , s. 32
Emneord [en]
Ekedahl Invariants, Noether Problem, Bogomolov Multiplier, Cyclic quotient singularities, Veronese Modules, Pile simplicial complex, Semigroup Rings, Betti Numbers
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-102709ISBN: 978-91-7447-895-2 (tryckt)OAI: oai:DiVA.org:su-102709DiVA, id: diva2:712744
Disputas
2014-05-28, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:15 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: Manuscript. Paper 3: Manuscript.

Tilgjengelig fra: 2014-05-06 Laget: 2014-04-16 Sist oppdatert: 2014-04-24bibliografisk kontrollert
Delarbeid
1. Introduction to the Ekedahl invariants
Åpne denne publikasjonen i ny fane eller vindu >>Introduction to the Ekedahl invariants
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Emneord
Ekedahl invariants, Bogomolov multiplier, Grothendieck group
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-102671 (URN)
Tilgjengelig fra: 2014-04-16 Laget: 2014-04-14 Sist oppdatert: 2014-04-16bibliografisk kontrollert
2. The Ekedahl invariants for finite groups
Åpne denne publikasjonen i ny fane eller vindu >>The Ekedahl invariants for finite groups
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Emneord
Ekedahl invariants, Heisenberg group, subgroup of GL_3
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-102672 (URN)
Tilgjengelig fra: 2014-04-16 Laget: 2014-04-14 Sist oppdatert: 2014-04-16
3. Syzygies of Veronese Modules
Åpne denne publikasjonen i ny fane eller vindu >>Syzygies of Veronese Modules
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Emneord
Veronese Modules, Pile simplicial complex, Betti numbers
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-102673 (URN)
Tilgjengelig fra: 2014-04-16 Laget: 2014-04-14 Sist oppdatert: 2014-04-16
4. On the variety of linear recurrences and numerical semigroups
Åpne denne publikasjonen i ny fane eller vindu >>On the variety of linear recurrences and numerical semigroups
2014 (engelsk)Inngår i: Semigroup Forum, ISSN 0037-1912, E-ISSN 1432-2137, Vol. 88, nr 3, s. 569-574Artikkel i tidsskrift (Fagfellevurdert) Published
Emneord
Numerical Semigroup, Linear recurrences, Generating function
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-102670 (URN)10.1007/s00233-013-9551-2 (DOI)000336737000006 ()
Tilgjengelig fra: 2014-04-14 Laget: 2014-04-14 Sist oppdatert: 2017-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Martino, Ivan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 523 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf