Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Achieving completeness: from constructive set theory to large cardinals
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen. (Logic)
2016 (engelsk)Doktoravhandling, monografi (Annet vitenskapelig)
Abstract [en]

This thesis is an exploration of several completeness phenomena, both in the constructive and the classical settings. After some introductory chapters in the first part of the thesis where we outline the background used later on, the constructive part contains a categorical formulation of several constructive completeness theorems available in the literature, but presented here in an unified framework. We develop them within a constructive reverse mathematical viewpoint, highlighting the metatheory used in each case and the strength of the corresponding completeness theorems.

The classical part of the thesis focuses on infinitary intuitionistic propositional and predicate logic. We consider a propositional axiomatic system with a special distributivity rule that is enough to prove a completeness theorem, and we introduce weakly compact cardinals as the adequate metatheoretical assumption for this development. Finally, we return to the categorical formulation focusing this time on infinitary first-order intuitionistic logic. We propose a first-order system with a special rule, transfinite transitivity, that embodies both distributivity as well as a form of dependent choice, and study the extent to which completeness theorems can be established. We prove completeness using a weakly compact cardinal, and, like in the constructive part, we study disjunction-free fragments as well. The assumption of weak compactness is shown to be essential for the completeness theorems to hold.

sted, utgiver, år, opplag, sider
Stockholm: Department of Mathematics, Stockholm University , 2016. , s. 104
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-130537ISBN: 978-91-7649-458-5 (tryckt)OAI: oai:DiVA.org:su-130537DiVA, id: diva2:931188
Disputas
2016-09-07, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-08-15 Laget: 2016-05-25 Sist oppdatert: 2016-08-24bibliografisk kontrollert

Open Access i DiVA

Achieving completeness: from constructive set theory to large cardinals(839 kB)133 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 839 kBChecksum SHA-512
acf9a4f0ecc440c69db578a9d108294f80baca4264f2d77c5c57519eb7f5f8007a5535c28910835d20630448667779c81a3a1979414c22d21484290600f83aec
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Espíndola, Christian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 133 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 3910 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf