Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Visa övriga samt affilieringar
Antal upphovsmän: 152017 (Engelska)Ingår i: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 77, nr 4, s. 937-948Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD(+) and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment.

Ort, förlag, år, upplaga, sidor
2017. Vol. 77, nr 4, s. 937-948
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
biokemi
Identifikatorer
URN: urn:nbn:se:su:diva-141414DOI: 10.1158/0008-5472.CAN-16-1476ISI: 000393887800014PubMedID: 27899380OAI: oai:DiVA.org:su-141414DiVA, id: diva2:1089159
Tillgänglig från: 2017-04-18 Skapad: 2017-04-18 Senast uppdaterad: 2018-01-08Bibliografiskt granskad
Ingår i avhandling
1. Structural and functional studies of proteins of medical relevance: Protein-ligand complexes in cancer and novel structural folds in bacteria
Öppna denna publikation i ny flik eller fönster >>Structural and functional studies of proteins of medical relevance: Protein-ligand complexes in cancer and novel structural folds in bacteria
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

X-ray crystallography is a tool for determining the structures of proteins and protein-ligand complexes. In this thesis the method has been employed to study several proteins of medical relevance.

Cancer is a terrible disease, severely impacting those affected, as well as their family and friends. Current cancer treatments involve a combination of cytostatic drugs, surgery and radiation treatment. Unfortunately many cytostatic drugs also kill healthy cells, which gives rise to serious side-effects. The discovery of treatments which selectively inhibit proteins essential for cancer cell survival but which are non-essential in normal cells, could reduce such side-effects.

MTH1 is a protein that degrades oxidised nucleotides, which when incorporated into DNA cause mutations and subsequent cell death. Cancer cells have higher levels of reactive oxygen species, which create oxidised nucleotides.  In Paper I it was discovered that cancer cells are dependent on MTH1 for their survival. Crystal structures of MTH1 in complex with small molecules guided their development into potent MTH1 inhibitors, capable of killing cancer cells. Cells with increased amounts of oxidised nucleotides, or with induced hypoxia, were more susceptible to MTH1 inhibition, as shown in Paper II. In Paper III several MTH1 orthologues from organisms often used in pre-clinical studies were tested for MTH1 inhibition. Leucine 116 of mouse MTH1 was determined to be important for the lower inhibition of the developed inhibitors towards this enzyme. A virtual fragment screening study using commercial chemicals resulted in several potent MTH1 inhibitors, as shown in Paper IV. The crystal structures with the fragments or optimised inhibitors did in most cases agree with the docking pose determined from the virtual screening. In addition to the known function of MTH1 in the degradation of oxidised nucleotides, Paper V showed that MTH1 also degrades methylated nucleotides.

MTHFD2 is responsible for providing one-carbon units for nucleotide synthesis in cancer cells. As MTHFD2 is present in cancer cells but not in healthy cells, targeting the enzyme would make it possible to selectively kill cancer cells. Paper VI presents the first structure of MTHFD2, along with the first inhibitor of the protein. This information provides a starting point for the development of potent and selective MTHFD2 inhibitors.

The botulinum neurotoxin from the bacterium Clostridium Botulinum is the causative agent of the deadly disease botulism. The action of the botulinum neurotoxin on nerve cells results in paralysis, and is life-threatening if the patient is not helped with breathing support. However, low doses of the neurotoxin are used as a successful treatment for several medical conditions, such as involuntary spasms. In Paper VII the structure of two proteins, P47 and OrfX2, encoded in the gene cluster of a botulinum neurotoxin, were determined. The structures resembled tubular lipid-binding proteins, previously only found in eukaryotes. The proteins were also found to be able to bind lipids. This work gives new insight into the structure and function of this group of proteins, which help the deadly botulinum neurotoxins.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2018. s. 79
Nyckelord
X-ray crystallography, Cancer, MTH1, oxidised nucleotides, MTHFD2, nucleotide metabolism, one-carbon metabolism, Botulism, Botulinum neurotoxin, OrfX, OrfX gene cluster
Nationell ämneskategori
Biokemi och molekylärbiologi Strukturbiologi
Forskningsämne
biokemi
Identifikatorer
urn:nbn:se:su:diva-150688 (URN)978-91-7797-097-2 (ISBN)978-91-7797-098-9 (ISBN)
Disputation
2018-02-16, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.

Tillgänglig från: 2018-01-24 Skapad: 2018-01-02 Senast uppdaterad: 2018-05-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Gustafsson, RobertFärnegårdh, KatarinaStenmark, Pal
Av organisationen
Institutionen för biokemi och biofysikInstitutionen för organisk kemiScience for Life Laboratory (SciLifeLab)
I samma tidskrift
Cancer Research
Biologiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1001 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf