Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity($)
Visa övriga samt affilieringar
Antal upphovsmän: 112018 (Engelska)Ingår i: SAR and QSAR in environmental research (Print), ISSN 1062-936X, E-ISSN 1029-046X, Vol. 29, nr 8, s. 591-611Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Results from the Ames test are the first outcome considered to assess the possible mutagenicity of substances. Many QSAR models and structural alerts are available to predict this endpoint. From a regulatory point of view, the recommendation from international authorities is to consider the predictions of more than one model and to combine results in order to develop conclusions about the mutagenicity risk posed by chemicals. However, the results of those models are often conflicting, and the existing inconsistency in the predictions requires intelligent strategies to integrate them. In our study, we evaluated different strategies for combining results of models for Ames mutagenicity, starting from a set of 10 diverse individual models, each built on a dataset of around 6000 compounds. The novelty of our study is that we collected a much larger set of about 18,000 compounds and used the new data to build a family of integrated models. These integrations used probabilistic approaches, decision theory, machine learning, and voting strategies in the integration scheme. Results are discussed considering balanced or conservative perspectives, regarding the possible uses for different purposes, including screening of large collection of substances for prioritization.

Ort, förlag, år, upplaga, sidor
2018. Vol. 29, nr 8, s. 591-611
Nyckelord [en]
prediction of mutagenicity, Ames test, ensembles of models, integrating SAR and QSAR, naive Bayes, Dempster-Shafer theory, self-organizing neural networks, GMDH
Nationell ämneskategori
Kemi Data- och informationsvetenskap Geovetenskap och miljövetenskap Biologiska vetenskaper Farmakologi och toxikologi
Identifikatorer
URN: urn:nbn:se:su:diva-160284DOI: 10.1080/1062936X.2018.1497702ISI: 000442692500003PubMedID: 30052064OAI: oai:DiVA.org:su-160284DiVA, id: diva2:1248994
Tillgänglig från: 2018-09-18 Skapad: 2018-09-18 Senast uppdaterad: 2018-09-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Norinder, Ulf
Av organisationen
Institutionen för data- och systemvetenskap
I samma tidskrift
SAR and QSAR in environmental research (Print)
KemiData- och informationsvetenskapGeovetenskap och miljövetenskapBiologiska vetenskaperFarmakologi och toxikologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 717 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf