Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine learning accelerated likelihood-free event reconstruction in dark matter direct detection
Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
Visa övriga samt affilieringar
Antal upphovsmän: 52019 (Engelska)Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, artikel-id P03004Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Reconstructing the position of an interaction for any dual-phase time projection chamber (TPC) with the best precision is key to directly detecting Dark Matter. Using the likelihood-free framework, a newalgorithm to reconstruct the 2-D (x; y) position and the size of the charge signal (e) of an interaction is presented. The algorithm uses the secondary scintillation light distribution (S2) obtained by simulating events using a waveform generator. To deal with the computational effort required by the likelihood-free approach, we employ the Bayesian Optimization for LikelihoodFree Inference (BOLFI) algorithm. Together with BOLFI, prior distributions for the parameters of interest (x; y; e) and highly informative discrepancy measures to performthe analyses are introduced. We evaluate the quality of the proposed algorithm by a comparison against the currently existing alternative methods using a large-scale simulation study. BOLFI provides a natural probabilistic uncertainty measure for the reconstruction and it improved the accuracy of the reconstruction over the next best algorithm by up to 15% when focusing on events at large radii (R > 30 cm, the outer 37% of the detector). In addition, BOLFI provides the smallest uncertainties among all the tested methods.

Ort, förlag, år, upplaga, sidor
2019. Vol. 14, artikel-id P03004
Nyckelord [en]
Analysis and statistical methods, Dark Matter detectors (WIMPs, axions, etc.), Simulation methods and programs, Time projection Chambers (TPC)
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:su:diva-167624DOI: 10.1088/1748-0221/14/03/P03004ISI: 000460721500001OAI: oai:DiVA.org:su-167624DiVA, id: diva2:1304379
Tillgänglig från: 2019-04-12 Skapad: 2019-04-12 Senast uppdaterad: 2019-04-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Pelssers, BartBarge, DerekConrad, Jan
Av organisationen
Fysikum
I samma tidskrift
Journal of Instrumentation
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 12 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf