Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of a complex system with few data: Evaluation of the effect of model structure and amount of data with dynamic bayesian network models
Stockholms universitet, Naturvetenskapliga fakulteten, Stockholm Resilience Centre.ORCID-id: 0000-0002-6991-7680
Visa övriga samt affilieringar
Antal upphovsmän: 62019 (Engelska)Ingår i: Environmental Modelling & Software, ISSN 1364-8152, E-ISSN 1873-6726, Vol. 118, s. 281-297Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A major challenge in environmental modeling is to identify structural changes in the ecosystem across time, i.e., changes in the underlying process that generates the data. In this paper, we analyze the Baltic Sea food web in order to 1) examine potential unobserved processes that could affect the ecosystem and 2) make predictions on some variables of interest. To do so, dynamic Bayesian networks with different setups of hidden variables (HVs) were built and validated applying two techniques: rolling-origin and rolling-window. Moreover, two statistical inference approaches were compared at regime shift detection: fully Bayesian and Maximum Likelihood Estimation. Our results confirm that, from the predictive accuracy point of view, more data help to improve the predictions whereas the different setups of HVs did not make a critical difference in the predictions. Finally, the different HVs picked up patterns in the data, which revealed changes in different parts of the ecosystem.

Ort, förlag, år, upplaga, sidor
2019. Vol. 118, s. 281-297
Nyckelord [en]
Baltic sea, Ecosystem model, Model comparison, Regime shift, Structural change, Hidden variable
Nationell ämneskategori
Data- och informationsvetenskap Geovetenskap och miljövetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-170065DOI: 10.1016/j.envsoft.2019.04.011ISI: 000469933100023OAI: oai:DiVA.org:su-170065DiVA, id: diva2:1335151
Tillgänglig från: 2019-07-04 Skapad: 2019-07-04 Senast uppdaterad: 2019-12-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Blenckner, Thorsten
Av organisationen
Stockholm Resilience Centre
I samma tidskrift
Environmental Modelling & Software
Data- och informationsvetenskapGeovetenskap och miljövetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf