Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MetaCNV - a consensus approach to infer accurate copy numbers from low coverage data
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Background: The majority of copy number callers requires high read coverage data that is often achieved with elevated material input, which increases the heterogeneity of tissue samples. However, to gain insights into smaller areas within a tissue sample, e.g a cancerous area in a heterogeneous tissue sample, less material is used for sequencing, which results in lower read coverage. Therefore, more focus needs to be put on copy number calling that is sensitive enough for low coverage data. 

Results: We present MetaCNV, a copy number caller that infers reliable copy numbers for human genomes with a consensus approach. MetaCNV specializes in low coverage data, but also performs well on normal and high coverage data. MetaCNV integrates the results of multiple copy number callers and infers absolute and unbiased copy numbers for the entire genome. MetaCNV is based on a meta-model that bypasses the weaknesses of current calling models while combining the strengths of existing approaches. Here we apply MetaCNV based on ReadDepth, SVDetect, and CNVnator to real and simulated datasets in order to demonstrate how the approach improves copy number calling. 

Conclusions: MetaCNV, available at https://bitbucket.org/sonnhammergroup/metacnv, provides accurate copy number prediction on low coverage data and performs well on high coverage data.

Nyckelord [en]
Human genome analysis, copy number calling, low coverage data
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Forskningsämne
biokemi med inriktning mot bioinformatik
Identifikatorer
URN: urn:nbn:se:su:diva-177917OAI: oai:DiVA.org:su-177917DiVA, id: diva2:1384888
Tillgänglig från: 2020-01-12 Skapad: 2020-01-12 Senast uppdaterad: 2020-02-04Bibliografiskt granskad
Ingår i avhandling
1.
Posten kunde inte hittas. Det kan bero på att posten inte längre är tillgänglig eller att du har råkat ange ett felaktigt id i adressfältet.

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Friedrich, StefanieSonnhammer, Erik
Av organisationen
Institutionen för biokemi och biofysikScience for Life Laboratory (SciLifeLab)
Bioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 29 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf