Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Department of Mathematics, Qazvin Branch, Islamic Azad University, Iran.
Antal upphovsmän: 22023 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1, artikel-id 15141Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective treatments to fight this worldwide concern. Several genes associated with the SARS-CoV-2, which are essential for its functionality, pathogenesis, and survival, have been identified. These genes, which play crucial roles in SARS-CoV-2 infection, are considered potential therapeutic targets. Developing drugs against these essential genes to inhibit their regular functions could be a good approach for COVID-19 treatment. Artificial intelligence and machine learning methods provide powerful infrastructures for interpreting and understanding the available data and can assist in finding fast explanations and cures. We propose a method to highlight the essential genes that play crucial roles in SARS-CoV-2 pathogenesis. For this purpose, we define eleven informative topological and biological features for the biological and PPI networks constructed on gene sets that correspond to COVID-19. Then, we use three different unsupervised learning algorithms with different approaches to rank the important genes with respect to our defined informative features. Finally, we present a set of 18 important genes related to COVID-19. Materials and implementations are available at: https://github.com/MahnazHabibi/Gene_analysis.

Ort, förlag, år, upplaga, sidor
2023. Vol. 13, nr 1, artikel-id 15141
Nationell ämneskategori
Bioinformatik och beräkningsbiologi Infektionsmedicin
Identifikatorer
URN: urn:nbn:se:su:diva-223226DOI: 10.1038/s41598-023-42127-9ISI: 001067753600005PubMedID: 37704748Scopus ID: 2-s2.0-85171162453OAI: oai:DiVA.org:su-223226DiVA, id: diva2:1809821
Tillgänglig från: 2023-11-06 Skapad: 2023-11-06 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Taheri, Golnaz

Sök vidare i DiVA

Av författaren/redaktören
Taheri, Golnaz
Av organisationen
Institutionen för data- och systemvetenskapScience for Life Laboratory (SciLifeLab)
I samma tidskrift
Scientific Reports
Bioinformatik och beräkningsbiologiInfektionsmedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 20 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf