Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classical field approximation of ultralight dark matter: Quantum break times, corrections, and decoherence
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).ORCID-id: 0000-0002-3875-9712
Antal upphovsmän: 42024 (Engelska)Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 109, nr 8, artikel-id 083527Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The classical field approximation is widely used to better understand the predictions of ultralight dark matter. Here, we use the truncated Wigner approximation method to test the classical field approximation of ultralight dark matter. This method approximates a quantum state as an ensemble of independently evolving realizations drawn from its Wigner function. The method is highly parallelizable and allows the direct simulation of quantum corrections and decoherence times in systems many times larger than have been previously studied in reference to ultralight dark matter. Our study involves simulation of systems in 1, 2, and 3 spatial dimensions. We simulate three systems, the condensation of a Gaussian random field in three spatial dimensions, a stable collapsed object in three spatial dimensions, and the merging of two stable objects in two spatial dimensions. We study the quantum corrections to the classical field theory in each case. We find that quantum corrections grow exponentially during nonlinear growth with the timescale being approximately equal to the system dynamical time. In stable systems the corrections grow quadratically. We also find that the primary effect of quantum corrections is to reduce the amplitude of fluctuations on the de Broglie scale in the spatial density. Finally, we find that the timescale associated with decoherence due to gravitational coupling to baryonic matter is at least as fast as the quantum corrections due to gravitational interactions. These results are consistent with the predictions of the classical field theory being accurate.

Ort, förlag, år, upplaga, sidor
2024. Vol. 109, nr 8, artikel-id 083527
Nationell ämneskategori
Subatomär fysik Astronomi, astrofysik och kosmologi
Identifikatorer
URN: urn:nbn:se:su:diva-232238DOI: 10.1103/PhysRevD.109.083527ISI: 001224283200003Scopus ID: 2-s2.0-85191859662OAI: oai:DiVA.org:su-232238DiVA, id: diva2:1888583
Tillgänglig från: 2024-08-13 Skapad: 2024-08-13 Senast uppdaterad: 2024-08-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kopp, Michael

Sök vidare i DiVA

Av författaren/redaktören
Kopp, Michael
Av organisationen
Nordiska institutet för teoretisk fysik (Nordita)
I samma tidskrift
Physical Review D: covering particles, fields, gravitation, and cosmology
Subatomär fysikAstronomi, astrofysik och kosmologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 13 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf