Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Benchmarking enrichment analysis methods with the disease pathway network
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).ORCID-id: 0000-0002-7521-8368
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).ORCID-id: 0000-0003-2245-7557
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).ORCID-id: 0000-0002-9015-5588
2024 (Engelska)Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 25, nr 2, artikel-id bbae069Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Enrichment analysis (EA) is a common approach to gain functional insights from genome-scale experiments. As a consequence, a large number of EA methods have been developed, yet it is unclear from previous studies which method is the best for a given dataset. The main issues with previous benchmarks include the complexity of correctly assigning true pathways to a test dataset, and lack of generality of the evaluation metrics, for which the rank of a single target pathway is commonly used. We here provide a generalized EA benchmark and apply it to the most widely used EA methods, representing all four categories of current approaches. The benchmark employs a new set of 82 curated gene expression datasets from DNA microarray and RNA-Seq experiments for 26 diseases, of which only 13 are cancers. In order to address the shortcomings of the single target pathway approach and to enhance the sensitivity evaluation, we present the Disease Pathway Network, in which related Kyoto Encyclopedia of Genes and Genomes pathways are linked. We introduce a novel approach to evaluate pathway EA by combining sensitivity and specificity to provide a balanced evaluation of EA methods. This approach identifies Network Enrichment Analysis methods as the overall top performers compared with overlap-based methods. By using randomized gene expression datasets, we explore the null hypothesis bias of each method, revealing that most of them produce skewed P-values.

Ort, förlag, år, upplaga, sidor
2024. Vol. 25, nr 2, artikel-id bbae069
Nyckelord [en]
disease pathway network, functional enrichment, gene expression data, gene set enrichment analysis, pathway enrichment analysis, systems biology
Nationell ämneskategori
Bioinformatik och beräkningsbiologi
Identifikatorer
URN: urn:nbn:se:su:diva-235218DOI: 10.1093/bib/bbae069ISI: 001281650100007Scopus ID: 2-s2.0-85186679428OAI: oai:DiVA.org:su-235218DiVA, id: diva2:1909838
Forskningsfinansiär
Vetenskapsrådet, 2022-06725Vetenskapsrådet, 2018-05973Vetenskapsrådet, 2019-04095Stockholms universitetTillgänglig från: 2024-11-01 Skapad: 2024-11-01 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Ingår i avhandling
1. From multi-omics data to global association networks: Application to disease module finding and pathway analysis
Öppna denna publikation i ny flik eller fönster >>From multi-omics data to global association networks: Application to disease module finding and pathway analysis
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis explores how bioinformatics advances the study of complex diseases by providing system-level models that capture intricate gene-protein interactions. Traditional reductionist methods focusing on isolated genes or proteins fail to explain the broader dysfunctions of complex diseases. The rise of diseases like cancer, cardiovascular and neurological disorders, and autoimmune conditions underscores the need for approaches leveraging high-throughput technologies and network-based models for comprehensive understanding.

Central to this research are functional association networks, which map direct and indirect functional relationships between genes and proteins. These networks integrate genomic, transcriptomic, proteomic, and functional data. Functional association networks are valuable resources in biological and biomedical research, enabling e.g. discovery of interaction partners, pathway enrichment analysis, and disease module identification. This thesis presents the 5th and 6th releases of FunCoup, a comprehensive resource of functional association networks, with upgrades in data integration, network framework, and user access via a redesigned website and Cytoscape app.

FunCoup 5 expanded to 22 species and generated around 70 million interaction links from 11 evidence types. Innovations included directed regulatory links, a SARS-CoV-2 virus-host network, and tissue-specific filtering for context-sensitive research.

FunCoup 6 expanded to all 640 species in InParanoiDB, with over 100 million links for the 23 primary species, including 1 million directed transcription factor-target links. A key improvement is the shift to a bin-free Bayesian training framework, using kernel density estimation of likelihoods of interaction from ten evidence types. New tools like MaxLink and TOPAS were added for disease module and drug target identification, together with built-in KEGG pathway enrichment via ANUBIX and EASE. Rebuilt in Python with a redesigned website, FunCoup 6 offers enhanced flexibility, scalability, and user access.

The FunCoup Cytoscape app uses the RESTful API to integrate FunCoup’s resources into Cytoscape, enabling network visualization and analysis across all 640 species with powerful Cytoscape tools and plugins.

This thesis highlights applications in pathway enrichment analysis (EA) and disease module detection. Network-based EA tools simplify the analysis of differentially expressed genes by linking them to known pathways, providing a systems-level understanding of molecular changes. A new benchmark compared 14 EA methods across 82 datasets from 26 diseases, showing that network-based methods like ANUBIX outperformed traditional approaches, offering more accurate insights and guidance for method selection.

TOPAS, a new approach, uncovers complex molecular interactions using functional association networks and disease-gene association databases. Complex diseases arise from genetic and environmental factors creating clusters of dysfunction within networks. These "disease modules" reveal genetic interactions in disease phenotypes and help identify novel therapeutic targets. By clustering disease-related proteins, this work advances network medicine, showcasing the power of computational techniques in understanding complex diseases.

This thesis contributes to network biology and network medicine, advancing multi-omics data integration into functional association networks, with a focus on FunCoup and network-based applications.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2024. s. 91
Nyckelord
Systems Biology; Network Biology; Functional Association Network; Pathway Enrichment Analysis; Network Medicine; Disease Module Detection
Nationell ämneskategori
Bioinformatik och beräkningsbiologi
Forskningsämne
biokemi med inriktning mot bioinformatik
Identifikatorer
urn:nbn:se:su:diva-235224 (URN)978-91-8107-022-4 (ISBN)978-91-8107-023-1 (ISBN)
Disputation
2024-12-20, Air&Fire at G2, SciLifeLab, Tomtebodavägen 23A and online via Zoom, public link is available at the department website, Solna, 14:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-11-27 Skapad: 2024-11-04 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Buzzao, DavideGuala, DimitriSonnhammer, Erik L. L.

Sök vidare i DiVA

Av författaren/redaktören
Buzzao, DavideGuala, DimitriSonnhammer, Erik L. L.
Av organisationen
Institutionen för biokemi och biofysikScience for Life Laboratory (SciLifeLab)
I samma tidskrift
Briefings in Bioinformatics
Bioinformatik och beräkningsbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 51 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf