Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multiplication matrices and ideals of projective dimension zero
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0002-1866-4417
2012 (Engelska)Ingår i: Mathematics in Computer Science, ISSN 1661-8270, Vol. 6, nr 1, s. 43-59Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We introduce the concept of multiplication matrices for ideals of projective dimension zero. We discuss various applications and, in particular, we give a new algorithm to compute the variety of an ideal of projective dimension zero.

Ort, förlag, år, upplaga, sidor
Birkhäuser Verlag, 2012. Vol. 6, nr 1, s. 43-59
Nationell ämneskategori
Matematik Algebra och logik
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-31516DOI: 10.1007/s11786-012-0108-7OAI: oai:DiVA.org:su-31516DiVA, id: diva2:277494
Tillgänglig från: 2009-11-19 Skapad: 2009-11-19 Senast uppdaterad: 2019-12-04Bibliografiskt granskad
Ingår i avhandling
1. Computational algorithms for algebras
Öppna denna publikation i ny flik eller fönster >>Computational algorithms for algebras
2009 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of six papers.

In Paper I, we give an algorithm for merging sorted lists of monomials and together with a projection technique, we obtain a new complexity bound for the Buchberger-Möller algorithm and the FGLM algorithm.

In Paper II, we discuss four different constructions of vector space bases associated to vanishing ideals of points. We show how to compute normal forms with respect to these bases and give complexity bounds. As an application we drastically improve the computational algebra approach to the reverse engineering of gene regulatory networks.

In Paper III, we introduce the concept of multiplication matrices for ideals of projective dimension zero. We discuss various applications and, in particular, we give a new algorithm to compute the variety of an ideal of projective dimension zero.

In Paper IV, we consider a subset of projective space over a finite field and give a geometric description of the minimal degree of a non-vanishing form with respect to this subset. We also give bounds on the minimal degree in terms of the cardinality of the subset.

In Paper V, we study an associative version of an algorithm constructed to compute the Hilbert series for graded Lie algebras. In the commutative case we use Gotzmann's persistence theorem to show that the algorithm terminates in finite time.

In Paper VI, we connect the commutative version of the algorithm in Paper V with the Buchberger algorithm.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University, 2009. s. 9
Nyckelord
Hilbert function, Gröbner basis, zero-dimensional ideal, affine variety, projective variety, run-time complexity
Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-31552 (URN)978-91-7155-974-6 (ISBN)
Disputation
2009-12-18, Sal 14, hus 5, Kräftriket, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning
At the time of doctoral defence, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript. Paper 6: ManuscriptTillgänglig från: 2009-11-26 Skapad: 2009-11-19 Senast uppdaterad: 2019-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Lundqvist, Samuel
Av organisationen
Matematiska institutionen
MatematikAlgebra och logik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 154 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf