Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Aspects of non-linearities for data assimilation by Kalman filtering in a shallow water model
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0002-4453-7403
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematisk statistik
Identifikatorer
URN: urn:nbn:se:su:diva-38806OAI: oai:DiVA.org:su-38806DiVA, id: diva2:315443
Tillgänglig från: 2010-04-29 Skapad: 2010-04-29 Senast uppdaterad: 2019-12-17Bibliografiskt granskad
Ingår i avhandling
1. Toward Sequential Data Assimilation for NWP Models Using Kalman Filter Tools
Öppna denna publikation i ny flik eller fönster >>Toward Sequential Data Assimilation for NWP Models Using Kalman Filter Tools
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The aim of the meteorological data assimilation is to provide an initial field for Numerical Weather Prediction (NWP) and to sequentially update the knowledge about it using available observations. Kalman filtering is a robust technique for the sequential estimation of the unobservable model state based on the linear regression concept. In the iterative use together with Kalman smoothing, it can easily be extended to work powerfully in the non-Gaussian and/or  non-linear framework. The huge dimensionality of the model state variable for high resolution NWP models (magnitude 108) makes it impossible with any explicit manipulations of the forecast error covariance matrix required for Kalman filter and Kalman smoother recursions. For NWP models the technical implementation of a Kalman filtering becomes the main challenge which provokes developments of novel data assimilation algorithms.

This thesis is concerned with extensions of the Kalman filtering when the assumptions on linearity and Gaussianity of the state space model are violated. The research includes both theoretical studies of the properties of such extensions, within the framework of idealized small-dimensional models, and the development of the data assimilation algorithms for a full scale limited area high resolution NWP forecasting system.

This thesis shows that non-Gaussian state space models can efficiently be approximated by a Gaussian state space model with an adaptively estimated variance of the stochastic forcing. That results in a type of local smoothing, in contrast to the global smoothing provided by Gaussian state space models. With regards to NWP models, the thesis shows that the sequential update of the uncertainty about the model state estimate is essential for efficient extraction of information from observations. The Ensemble Kalman filters can be used to represent both flow- and observation-network-dependent structures of the forecast error covariance matrix, in spite of a severe rank-deficiency of the Ensemble Kalman filters. As a culmination of this research the hybrid variational data assimilation has been developed on top of the HIRLAM variational data assimilation system. It provides the possibility of utilizing, during the data assimilation process, the error-of-the-day structure of the forecast error covariance, estimated from the ensemble of perturbations, at the same time as the full rank of the variational data assimilation is preserved.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University, 2010. s. 115
Nyckelord
non-Gaussian state space models, Kalman filtering, ETKF, 3D-Var, data assimilation, NWP
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematisk statistik
Identifikatorer
urn:nbn:se:su:diva-38820 (URN)978-91-7447-093-2 (ISBN)
Disputation
2010-06-04, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning
At the time of the doctoral defense, the following papers were unpublished  and had a status as follows: Paper 1: Manuscript. Paper 2: Manuscript. Paper 3: Accepted. Paper 4: Manuscript.Tillgänglig från: 2010-05-12 Skapad: 2010-04-29 Senast uppdaterad: 2010-05-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Bojarova, Jelena
Av organisationen
Matematiska institutionen
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 81 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf