Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robust Non-linear Wiener-Granger Causality For Large High-dimensional Data
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0001-7194-7996
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Wiener-Granger causality is a widely used framework of causal analysis for temporally resolved events. We introduce a new measure of Wiener-Granger causality based on kernelization of partial canonical correlation analysis with specific advantages in the context of large high-dimensional data. The introduced measure is able to detect non-linear and non-monotonous signals, is designed to be immune to noise, and offers tunability in terms of computational complexity in its estimations. Furthermore, we show that, under specified conditions, the intro- duced measure can be regarded as an estimate of conditional mutual information (tranfer entropy). The functionality of this measure is assessed using comparative simulations where it outperforms other existing methods. The paper is concluded with an application to climatological data.

Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematisk statistik
Identifikatorer
URN: urn:nbn:se:su:diva-101590OAI: oai:DiVA.org:su-101590DiVA, id: diva2:704415
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammetVetenskapsrådetTillgänglig från: 2014-03-12 Skapad: 2014-03-12 Senast uppdaterad: 2014-03-13
Ingår i avhandling
1. A Treatise on Measuring Wiener-Granger Causality
Öppna denna publikation i ny flik eller fönster >>A Treatise on Measuring Wiener-Granger Causality
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Wiener-Granger causality is a well-established concept of causality based on stochasticity and the flow of time, with applications in a broad array of quantitative sciences. The majority of methods used to measure Wiener-Granger causality are based on linear premises and hence insensitive to non-linear signals. Other frameworks based on non-parametric techniques are often computationally expensive and susceptible to overfitting or lack of sensitivity.

In this thesis, Paper I investigates the application of linear Wiener-Granger causality to migrating cancer cell data obtained using a Systems Microscopy experimental platform. Paper II represents a review of non-parametric measures based on information theory and discusses a number of related bottlenecks and potential routes of circumvention. Paper III studies the properties of a frequently used non-parametric information theoretical measure for a class of non-Gaussian distributions. Paper IV introduces a new efficient scheme for non-parametric analysis of Wiener-Granger causality based on kernel canonical correlations, and studies the connection between this new scheme and the information theoretical approach. Lastly, Paper V draws upon the results in the preceding paper to discuss non-parametric analysis of Wiener-Granger causality in partially observed systems.

Altogether, the work presented in this thesis constitutes a comprehensive review on measures of Wiener-Granger causality in general, and in particular, features new insights on efficient non-parametric analysis of Wiener-Granger causality in high-dimensional settings.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University, 2014. s. 44
Nyckelord
Wiener-Granger causality, Information theory, Kernel canonical correlation, Systems Microscopy, Cell migration.
Nationell ämneskategori
Sannolikhetsteori och statistik Cellbiologi
Forskningsämne
matematisk statistik
Identifikatorer
urn:nbn:se:su:diva-101595 (URN)978-91-7447-861-7 (ISBN)
Disputation
2014-04-16, sal 14 hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammetVetenskapsrådet
Anmärkning

At the time of the doctoral defence, the following papers were unpublished and had a status as follows: Paper 3: Accepted Paper 4: Manuscript; Paper 5: Accepted

Tillgänglig från: 2014-03-25 Skapad: 2014-03-12 Senast uppdaterad: 2014-03-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Jafari-Mamaghani, Mehrdad
Av organisationen
Matematiska institutionen
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 132 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf