Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för tillämpad miljövetenskap (ITM).
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Journal of Geophysical Research: Atmospheres, ISSN 2169-897X, Vol. 118, nr 19, s. 11327-11338Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Atmospheric organic aerosol concentrations depend in part on the gas-particle partitioning of primary organic aerosol (POA) emissions. Consequently, heating and dilution were used to investigate the volatility of biomass-burning smoke particles from combustion of common North American trees/shrubs/grasses during the third Fire Lab at Missoula Experiment. Fifty to eighty percent of the mass of biomass-burning POA evaporated when isothermally diluted from plume- (~1000 µg m−3) to ambient-like concentrations (~10 µg m−3), while roughly 80% of the POA evaporated upon heating to 100°C in a thermodenuder with a residence time of ~14 sec. Therefore, the majority of the POA emissions were semivolatile. Thermodenuder measurements performed at three different residence times indicated that there were not substantial mass transfer limitations to evaporation (i.e., the mass accommodation coefficient appears to be between 0.1 and 1). An evaporation kinetics model was used to derive volatility distributions and enthalpies of vaporization from the thermodenuder data. A single volatility distribution can be used to represent the measured gas-particle partitioning from the entire set of experiments, including different fuels, organic aerosol concentrations, and thermodenuder residence times. This distribution, derived from the thermodenuder measurements, also predicts the dilution-driven changes in gas-particle partitioning. This volatility distribution and associated emission factors for each fuel studied can be used to update emission inventories and to simulate the gas-particle partitioning of biomass-burning POA emissions in chemical transport models.

Ort, förlag, år, upplaga, sidor
2013. Vol. 118, nr 19, s. 11327-11338
Nationell ämneskategori
Meteorologi och atmosfärforskning
Identifikatorer
URN: urn:nbn:se:su:diva-101759DOI: 10.1002/jgrd.50828ISI: 000330266700034OAI: oai:DiVA.org:su-101759DiVA, id: diva2:705886
Anmärkning

AuthorCount:9;

Research funders:

National Park Service;  Joint Fire Science Program; EPA STAR program through the National Center for Environmental Research (NCER) R833747, R834554;  DOE (BER, ASR program) DE-SC0006035; United States Environmental Protection Agency  

Tillgänglig från: 2014-03-18 Skapad: 2014-03-14 Senast uppdaterad: 2014-03-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Riipinen, Ilona
Av organisationen
Institutionen för tillämpad miljövetenskap (ITM)
Meteorologi och atmosfärforskning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 38 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf