Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Achieving completeness: from constructive set theory to large cardinals
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen. (Logic)
2016 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

This thesis is an exploration of several completeness phenomena, both in the constructive and the classical settings. After some introductory chapters in the first part of the thesis where we outline the background used later on, the constructive part contains a categorical formulation of several constructive completeness theorems available in the literature, but presented here in an unified framework. We develop them within a constructive reverse mathematical viewpoint, highlighting the metatheory used in each case and the strength of the corresponding completeness theorems.

The classical part of the thesis focuses on infinitary intuitionistic propositional and predicate logic. We consider a propositional axiomatic system with a special distributivity rule that is enough to prove a completeness theorem, and we introduce weakly compact cardinals as the adequate metatheoretical assumption for this development. Finally, we return to the categorical formulation focusing this time on infinitary first-order intuitionistic logic. We propose a first-order system with a special rule, transfinite transitivity, that embodies both distributivity as well as a form of dependent choice, and study the extent to which completeness theorems can be established. We prove completeness using a weakly compact cardinal, and, like in the constructive part, we study disjunction-free fragments as well. The assumption of weak compactness is shown to be essential for the completeness theorems to hold.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University , 2016. , s. 104
Nationell ämneskategori
Algebra och logik
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-130537ISBN: 978-91-7649-458-5 (tryckt)OAI: oai:DiVA.org:su-130537DiVA, id: diva2:931188
Disputation
2016-09-07, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-08-15 Skapad: 2016-05-25 Senast uppdaterad: 2016-08-24Bibliografiskt granskad

Open Access i DiVA

Achieving completeness: from constructive set theory to large cardinals(839 kB)133 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 839 kBChecksumma SHA-512
acf9a4f0ecc440c69db578a9d108294f80baca4264f2d77c5c57519eb7f5f8007a5535c28910835d20630448667779c81a3a1979414c22d21484290600f83aec
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Espíndola, Christian
Av organisationen
Matematiska institutionen
Algebra och logik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 133 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 3911 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf