Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High GC content causes orphan proteins to be intrinsically disordered
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab). Linköping University, Sweden.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab). Kungliga Tekniska Högskolan, Sweden.ORCID-id: 0000-0002-7115-9751
Antal upphovsmän: 42017 (Engelska)Ingår i: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 13, nr 3, artikel-id e1005375Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

De novo creation of protein coding genes involves the formation of short ORFs from noncoding regions; some of these ORFs might then become fixed in the population These orphan proteins need to, at the bare minimum, not cause serious harm to the organism, meaning that they should for instance not aggregate. Therefore, although the creation of short ORFs could be truly random, the fixation should be subjected to some selective pressure. The selective forces acting on orphan proteins have been elusive, and contradictory results have been reported. In Drosophila young proteins are more disordered than ancient ones, while the opposite trend is present in yeast. To the best of our knowledge no valid explanation for this difference has been proposed. To solve this riddle we studied structural properties and age of proteins in 187 eukaryotic organisms. We find that, with the exception of length, there are only small differences in the properties between proteins of different ages. However, when we take the GC content into account we noted that it could explain the opposite trends observed for orphans in yeast (low GC) and Drosophila (high GC). GC content is correlated with codons coding for disorder promoting amino acids. This leads us to propose that intrinsic disorder is not a strong determining factor for fixation of orphan proteins. Instead these proteins largely resemble random proteins given a particular GC level. During evolution the properties of a protein change faster than the GC level causing the relationship between disorder and GC to gradually weaken.

Ort, förlag, år, upplaga, sidor
2017. Vol. 13, nr 3, artikel-id e1005375
Nationell ämneskategori
Biologiska vetenskaper Bioinformatik (beräkningsbiologi)
Forskningsämne
biokemi med inriktning mot bioinformatik
Identifikatorer
URN: urn:nbn:se:su:diva-142711DOI: 10.1371/journal.pcbi.1005375ISI: 000398031900014PubMedID: 28355220OAI: oai:DiVA.org:su-142711DiVA, id: diva2:1093169
Tillgänglig från: 2017-05-05 Skapad: 2017-05-05 Senast uppdaterad: 2019-12-12Bibliografiskt granskad
Ingår i avhandling
1. Orphan Genes Bioinformatics: Identification and properties of de novo created genes
Öppna denna publikation i ny flik eller fönster >>Orphan Genes Bioinformatics: Identification and properties of de novo created genes
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Even today, many genes are without any known homolog. These "orphans" are found in all species, from Viruses to Prokaryotes and Eukaryotes. For a portion of these genes, we might simply not have enough data to find homologs yet. Some of them are imported from taxonomically distant organisms via lateral transfer; others have homologs, but mutated beyond the point of recognition.

However, a sizeable fraction of orphan genes is unambiguously created via "de novo" mechanisms. The study of such novel genes can contribute to our understanding of the emergence of functional novelty and the adaptation of species to new ecological niches.

In this work, we first survey the field of orphan studies, and illustrate some of the common issues. Next, we analyze some of the intrinsic properties of orphans proteins, including secondary structure elements and Intrinsic Structural Disorder; specifically, we observe that in young proteins the relationship between these properties and the G+C content of their coding sequence is stronger than in older proteins.

We then tackle some of the methodological problems often found in orphan studies. We find that using evolutionarily close species, and sensitive, state-of-the art homology recognition methods is instrumental to the identification of a set of orphans enriched in de novo created ones.

Finally, we compare how intrinsic disorder is distributed in bacteria versus eukaryota. Eukaryotic proteins are longer and more disordered; the difference is to be attributed primarily to eukaryotic-specific domains and linker regions. In these sections of the proteins, a higher frequency of the disorder-promoting amino acid Serine can be observed in Eukaryotes.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2017
Nyckelord
bioinformatics, de novo, orphans, evolutionary genetics
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
biokemi med inriktning mot bioinformatik
Identifikatorer
urn:nbn:se:su:diva-149168 (URN)978-91-7797-085-9 (ISBN)978-91-7797-086-6 (ISBN)
Disputation
2018-01-12, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.

Tillgänglig från: 2017-12-20 Skapad: 2017-11-20 Senast uppdaterad: 2017-12-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Basile, WalterSachenkova, OxanaLight, SaraElofsson, Arne
Av organisationen
Institutionen för biokemi och biofysikScience for Life Laboratory (SciLifeLab)
I samma tidskrift
PloS Computational Biology
Biologiska vetenskaperBioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 222 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf