CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt159",{id:"formSmash:upper:j_idt159",widgetVar:"widget_formSmash_upper_j_idt159",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt160_j_idt166",{id:"formSmash:upper:j_idt160:j_idt166",widgetVar:"widget_formSmash_upper_j_idt160_j_idt166",target:"formSmash:upper:j_idt160:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On Supersingular PerturbationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2017 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2017. , 48 p.
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-147396ISBN: 978-91-7649-982-5 (print)ISBN: 978-91-7649-983-2 (electronic)OAI: oai:DiVA.org:su-147396DiVA: diva2:1144476
##### Public defence

2017-11-14, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt550",{id:"formSmash:j_idt550",widgetVar:"widget_formSmash_j_idt550",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt560",{id:"formSmash:j_idt560",widgetVar:"widget_formSmash_j_idt560",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt569",{id:"formSmash:j_idt569",widgetVar:"widget_formSmash_j_idt569",multiple:true});
##### Note

##### List of papers

This thesis consists of four papers and deals with supersingular rank one perturbations of self-adjoint operators and their models in Hilbert or Pontryagin spaces. Here, the term supersingular describes perturbation elements that are outside the underlying space but still obey a certain regularity conditions.

The first two papers study certain Sturm-Liouville differential expressions that can be realised as Schrödinger operators. In Paper I we show that for the potential consisting of the inverse square plus a comparatively well-behaved term we can employ an existing model due to Kurasov to describe these operators in a Hilbert space. In particular, this approach is in good agreement with ODE techniques.

In Paper II we study the inverse fourth power potential.While it is known that the ODE techniques still work, we show that the above model fails and thus that there are limits to the above operator theoretic approach.

In Paper III we concentrate on generalising Kurasov's model. The original formulation assumes that the self-adjoint operator is semi-bounded, whereas we drop this requirement. We give two models with a Hilbert and Pontryagin space structure, respectively, and study the connections between the resulting constructions.

Finally, in Paper IV, we consider the concrete case of the operator of multiplication by the independent variable, a self-adjoint operator whose spectrum covers the real line, and study its perturbations. This illustrates some of the formalism that was developed in the previous paper, and a number of more explicit results are obtained, especially regarding the spectra of the appearing perturbed operators.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2017-10-20 Created: 2017-09-26 Last updated: 2017-10-04Bibliographically approved1. An Operator Theoretic Interpretation of the Generalized Titchmarsh–Weyl Function for Perturbed Spherical Schrödinger Operators$(function(){PrimeFaces.cw("OverlayPanel","overlay793931",{id:"formSmash:j_idt632:0:j_idt636",widgetVar:"overlay793931",target:"formSmash:j_idt632:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On the Weyl solution of the 1-dim Schrödinger operator with inverse fourth power potential$(function(){PrimeFaces.cw("OverlayPanel","overlay1144462",{id:"formSmash:j_idt632:1:j_idt636",widgetVar:"overlay1144462",target:"formSmash:j_idt632:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. On supersingular perturbations of not necessarily semibounded self-adjoint operators$(function(){PrimeFaces.cw("OverlayPanel","overlay1144467",{id:"formSmash:j_idt632:2:j_idt636",widgetVar:"overlay1144467",target:"formSmash:j_idt632:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Some supersingular perturbations of a multiplication operator$(function(){PrimeFaces.cw("OverlayPanel","overlay1144468",{id:"formSmash:j_idt632:3:j_idt636",widgetVar:"overlay1144468",target:"formSmash:j_idt632:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1824",{id:"formSmash:j_idt1824",widgetVar:"widget_formSmash_j_idt1824",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1877",{id:"formSmash:lower:j_idt1877",widgetVar:"widget_formSmash_lower_j_idt1877",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1878_j_idt1884",{id:"formSmash:lower:j_idt1878:j_idt1884",widgetVar:"widget_formSmash_lower_j_idt1878_j_idt1884",target:"formSmash:lower:j_idt1878:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});