Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Rekke forfattare: 22017 (engelsk)Inngår i: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1858, nr 11, s. 884-894Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Bacterial NO-reductases (NOR) belong to the heme-copper oxidase (HCuO) superfamily, in which most members are O-2-reducing, proton-pumping enzymes. This study is one in a series aiming to elucidate the reaction mechanisms of the HCuOs, including the mechanisms for cellular energy conservation. One approach towards this goal is to compare the mechanisms for the different types of HCuOs, cytochrome c oxidase (CcO) and NOR, reducing the two substrates O-2 and NO. Specifically in this study, we describe the mechanism for oxygen reduction in cytochrome c dependent NOR (cNOR). Hybrid density functional calculations were performed on large cluster models of the cNOR binuclear active site. Our results are used, together with published experimental information, to construct a free energy profile for the entire catalytic cycle. Although the overall reaction is quite exergonic, we show that during the reduction of molecular oxygen in cNOR, two of the reduction steps are endergonic with high barriers for proton uptake, which is in contrast to oxygen reduction in CcO, where all reduction steps are exergonic. This difference between the two enzymes is suggested to be important for their differing capabilities for energy conservation. An additional result from this study is that at least three of the four reduction steps are initiated by proton transfer to the active site, which is in contrast to CcO, where electrons always arrive before the protons to the active site. The roles of the non-heme metal ion and the redox-active tyrosine in the active site are also discussed.

sted, utgiver, år, opplag, sider
2017. Vol. 1858, nr 11, s. 884-894
Emneord [en]
Density functional theory, Energy profile, Cellular energy conservation, Electron transfer, Proton transfer, Non-heme iron
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-148975DOI: 10.1016/j.bbabio.2017.08.005ISI: 000412611600002PubMedID: 28801051OAI: oai:DiVA.org:su-148975DiVA, id: diva2:1162808
Tilgjengelig fra: 2017-12-05 Laget: 2017-12-05 Sist oppdatert: 2017-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Blomberg, Margareta R. A.Ädelroth, Pia
Av organisasjonen
I samme tidsskrift
Biochimica et Biophysica Acta - Bioenergetics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf