CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt166",{id:"formSmash:upper:j_idt166",widgetVar:"widget_formSmash_upper_j_idt166",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt167_j_idt169",{id:"formSmash:upper:j_idt167:j_idt169",widgetVar:"widget_formSmash_upper_j_idt167_j_idt169",target:"formSmash:upper:j_idt167:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On ideals generated by two generic quadratic forms in the exterior algebraPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### National Category

Algebra and Logic Discrete Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-154539OAI: oai:DiVA.org:su-154539DiVA, id: diva2:1194353
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt507",{id:"formSmash:j_idt507",widgetVar:"widget_formSmash_j_idt507",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt519",{id:"formSmash:j_idt519",widgetVar:"widget_formSmash_j_idt519",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt530",{id:"formSmash:j_idt530",widgetVar:"widget_formSmash_j_idt530",multiple:true}); Available from: 2018-04-01 Created: 2018-04-01 Last updated: 2018-04-07Bibliographically approved
##### In thesis

Based on the structure theory of pairs of skew-symmetric matrices, we give a conjecture for the Hilbert series of the exterior algebra modulo the ideal generated by two generic quadratic forms. We show that the conjectured series is an upper bound in the coefficient-wise sense, and we determine a majority of the coefficients. We also conjecture that the series is equal to the series of the squarefree polynomial ring modulo the ideal generated by the squares of two generic linear forms.

1. Around power ideals: From Fröberg's conjecture to zonotopal algebra$(function(){PrimeFaces.cw("OverlayPanel","overlay1195915",{id:"formSmash:j_idt827:0:j_idt831",widgetVar:"overlay1195915",target:"formSmash:j_idt827:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1282",{id:"formSmash:j_idt1282",widgetVar:"widget_formSmash_j_idt1282",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1339",{id:"formSmash:lower:j_idt1339",widgetVar:"widget_formSmash_lower_j_idt1339",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1340_j_idt1342",{id:"formSmash:lower:j_idt1340:j_idt1342",widgetVar:"widget_formSmash_lower_j_idt1340_j_idt1342",target:"formSmash:lower:j_idt1340:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});