Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fishing weakens a positive link between herbivore abundance and plant growth in tropical seagrass beds
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.ORCID-id: 0000-0002-3973-1703
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.ORCID-id: 0000-0001-6936-0926
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Herbivory is a key process influencing the structure and function of both terrestrial and aquatic systems. In seagrass ecosystems, moderate levels of herbivory may stimulate plant growth, compensating for the loss of eaten tissue. However, the relationship between herbivory and seagrass growth can be influenced by an array of factors, such as seasonality, herbivore abundance, and presence of epiphytes, many of which can be directly or indirectly affected by human activities like fishing. Here, we used data from a multi-season field survey in fished and protected seagrass beds to assess how fishing and seasonality affect the link between herbivores, herbivory, and plant growth in seagrasses. Path analyses revealed an interactive effect of seasonality and protection. In protected seagrass beds, seasonally high herbivore abundance positively affected herbivory rates, which in turn enhanced seagrass growth. This link was however not apparent in seagrass beds subjected to fishing activities. At the same time, seasonality effects seemed stronger in fished areas, suggesting that in addition to weakening a positive herbivory-plant growth interaction, fishing increases temporal instability of ecosystems. Our results highlight the need for evaluating not only the direct effects of fisheries exploitation on fish populations, but also the potential indirect effects on ecosystems, to improve fisheries management.

HSV kategori
Forskningsprogram
marin ekologi
Identifikatorer
URN: urn:nbn:se:su:diva-154965OAI: oai:DiVA.org:su-154965DiVA, id: diva2:1196074
Tilgjengelig fra: 2018-04-09 Laget: 2018-04-09 Sist oppdatert: 2020-03-05bibliografisk kontrollert
Inngår i avhandling
1. Effects of Marine Protected Areas on Tropical Seagrass Ecosystems
Åpne denne publikasjonen i ny fane eller vindu >>Effects of Marine Protected Areas on Tropical Seagrass Ecosystems
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Seagrass beds are highly productive coastal ecosystems that sustain a rich and diverse associated fauna and flora. Increasing anthropogenic pressures threaten seagrass ecosystems and have already led to major seagrass losses across the world. Marine Protected Areas (MPAs) have become one of the key strategies to manage coastal ecosystems and associated resources worldwide and have been often shown to successfully protect marine ecosystems. However, relatively few studies have assessed the effects of MPAs on seagrass ecosystems, and there are indications that MPAs may not be able to fully protect seagrasses, especially from disturbances originating outside their boundaries. Within this context, this thesis aimed to investigate the direct and indirect effects (those mediated by biotic interactions) of MPAs on tropical seagrasses, associated fish communities, and ecosystem processes.

The thesis consists of three parts. First, we used 10-years of seagrass monitoring data within a MPA to evaluate the temporal variability in seagrass cover and species composition in relation to changes in environmental conditions (Paper I). Second, we investigated the potential of MPAs to enhance the temporal stability of seagrass ecosystems using a 10-month field study. We surveyed seagrass-associated fish communities (Paper II) and estimated seagrass growth and herbivory rates (Paper III) during three different seasons within MPAs and unprotected sites. Finally, to evaluate the effects of MPAs and land-use on seagrass ecosystems we surveyed seagrass species and trait composition within government-managed MPAs, community-managed MPAs, and unprotected sites (Paper IV).

The seagrass bed monitored in Paper I showed a high temporal and spatial variability, with a temporal decline in cover and change in species composition, followed by a period of recovery. This pattern could not be associated with any of the climate and tidal variables considered, suggesting that potential drivers of decline may have originated outside MPA boundaries. The results from the seasonal field study showed that MPAs increased the temporal stability of seagrass-associated fish communities, particularly juvenile fish (Paper II), and strengthened a positive link between herbivorous fish, herbivory rates, and seagrass growth (Paper III), suggesting the presence of a positive feedback that promotes stability. Finally, MPAs affected seagrass species and trait composition (by selecting for more stress-sensitive species) but did not seem to be able to protect seagrasses from land-use effects, with seagrasses showing similar changes in species and trait composition within and outside MPAs (Paper IV). Considering these results, this thesis builds to a body of literature indicating that MPAs alone may not be sufficient to protect seagrass ecosystems and that improved management strategies may be necessary to preserve these important coastal habitats.

sted, utgiver, år, opplag, sider
Stockholm: Department of Ecology, Environment and Plant Sciences, Stockholm University, 2018. s. 54
Emneord
coastal ecosystems, seagrass, marine protected areas, management, conservation, fish, herbivory, Western Indian Ocean, East Africa, tropical
HSV kategori
Forskningsprogram
marin ekologi
Identifikatorer
urn:nbn:se:su:diva-154966 (URN)978-91-7797-268-6 (ISBN)978-91-7797-269-3 (ISBN)
Disputas
2018-06-05, Vivi Täckholmssalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, Stockholm, 09:30 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.

Tilgjengelig fra: 2018-05-09 Laget: 2018-04-09 Sist oppdatert: 2018-05-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Alonso Aller, ElisaEklöf, Johan S.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 787 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf