Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Validation of a HILIC/ESI-MS/MS method for the wood burning marker levoglucosan and its isomers in airborne particulate matter
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.ORCID-id: 0000-0001-8004-2443
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 211, s. 617-623Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present study, a methodology involving hydrophilic interaction liquid chromatography (HILIC) and electrospray (ESI) tandem mass spectrometry (MS/MS) was developed for measurement of anhydrous monosaccharides as markers for wood burning in atmospheric aerosols, PM10. No extensive sample preparation, other than ultrasound-assisted solvent extraction and evaporation, was applied. A pentahydroxysilica column enabled separation of levoglucosan from mannosan and galactosan within 5 min and the quantitative performance was validated using the standard reference materials (SRM) 1649a and 1649b. The experimentally obtained results for SRMs were in agreement with values previously reported in other studies. Achieved instrumental limits of detection (LODs) were below 10 pg injected on column, corresponding to LODs in air lower than 0.10 ng/m3 for all measured isomers for 2–3 day sampling with 1.0 m−3 h−1 sampling rate.

The validated method was used for the determination of levoglucosan and its isomers in atmospheric aerosols collected in three different Swedish urban areas during the winter and summer time in 2017. The total measured concentrations for levoglucosan and galactosan + mannosan were determined to be between 78 and 167 ng/m3 in January 2017, which is approximately 10-times higher compared to the levels detected in July, reflecting the higher frequency of wood burning for heating during the cold season. Calculated concentration ratios between levoglucosan and its isomers in the urban area samples indicated mostly mixed softwood/hardwood combustion in winter time; on the other hand, softwood burning was observed as the major emission in summer time.

sted, utgiver, år, opplag, sider
2018. Vol. 211, s. 617-623
Emneord [en]
Levoglucosan, Mannosan/galactosan, PM10, Atmospheric aerosols, SRM 1649
HSV kategori
Forskningsprogram
analytisk kemi
Identifikatorer
URN: urn:nbn:se:su:diva-155626DOI: 10.1016/j.chemosphere.2018.07.188ISI: 000446149600066OAI: oai:DiVA.org:su-155626DiVA, id: diva2:1201393
Tilgjengelig fra: 2018-04-25 Laget: 2018-04-25 Sist oppdatert: 2022-02-26bibliografisk kontrollert
Inngår i avhandling
1. Analytical methods for biomolecules involved in atmospheric aerosol formation in the Arctic
Åpne denne publikasjonen i ny fane eller vindu >>Analytical methods for biomolecules involved in atmospheric aerosol formation in the Arctic
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In the Arctic, increasing ice-free conditions and nutrients freed from the melting ice must strongly influence the marine life. Aerosol emissions from microbiological marine processes may affect the low clouds and fogs over the summer Arctic, which in turn have effects on the melting of sea ice. The radiative properties of the high Arctic low clouds are strongly dependent on the number concentration of airborne water-soluble particles, known as cloud condensation nuclei (CCN). If the effects of CCN on cloud optical properties is to be fully understood it is important to be able to specify the source and concentrations of the Arctic aerosol particles.

Previous studies in the Arctic have indicated that organic material formed in the uppermost ocean surface is transferred to the atmosphere and plays a potentially very important role in the aerosol-fog/cloud cycle. However, many aspects of this process remain unverified and chemical characterisation of targeted groups of biomolecules is still notably fragmentary or non-existing. Investigation of biomolecules, particularly amino acids, peptides and proteins together with mono- and polysac­charides and fatty acids in the airborne aerosol, and their relative contributions to fog/cloud water, requires development of an array of “cutting edge” analytical techniques and methods.

In this thesis, electrospray ionization mass spectrometry was used for all applications and target biomolecules. The measurements in the Arctic turned out to be challenging due to the highly complex, salty matrices, combined with very low concentration and high diversity of the target biomolecules, and each step of the analytical chain needed careful consideration. To increase the detectability of the very low levels of polysaccharides and proteins in aerosols, these compounds were hydrolyzed to their subunits, monosaccharides and amino acids. Monosaccharides were separated using hydrophilic interaction chromatography, which was beneficial for their detection in electrospray ionization mass spectrometry. Amino acids were derivatized, yielding improvement in reversed-phase chromatographic separation, ionization efficiency as well as selectivity. For fatty acids in a sea surface sample, a novel fast screening method was developed, utilizing travelling-wave ion mobility separation as an orthogonal technique connected to mass spectrometry. In addition, a method for the detection of wood burning as an anthropogenic source of aerosols was developed, utilizing anhydrous monosaccharides as markers. This method can be used in the upcoming expeditions for source apportionment studies.

The results from the analyses of the aerosol and fog water samples, collected over the summer pack ice north of 80 °N, show that both total polysaccharides and total proteinaceous compounds (sum of proteins, peptides and amino acids) occurred at the pmol m-3 to nmol m-3 level. Interestingly, the levels were found higher between different years, suggested to be coupled to less ice coverage and thus to a higher biological activity in the ocean surface. The highest concentrations of polysaccharides, as an indication of marine polymer gels, were found during the summer over the pack ice area. In addition, a pilot source apportionment study was carried out combining the measurement of different molecular tracers, used as source markers. This study indicates the seasonality and abundance of marine polymer gels as an important feature of the Arctic Ocean connected to the melting and freezing of sea ice. It should be further studied how the abundance of these gels, which have a high potential for cloud droplet activation, affect the melting and freezing of the perennial sea ice.

Given the successful development of analytical methods for targeted groups of biomolecules, this thesis has supported the importance of biomolecules as CCN and for cloud formation in the Arctic. Less ice coverage may further increase the number of biomolecular CCN which could change the radiative balance, by the formation of more low-level clouds. Overall, more studies are required to further unravel the complex relationship of biogenic sources, atmospheric chemistry and meteorology to assess the impact of climate change on the Arctic.

sted, utgiver, år, opplag, sider
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2018. s. 76
HSV kategori
Forskningsprogram
analytisk kemi
Identifikatorer
urn:nbn:se:su:diva-155254 (URN)978-91-7797-238-9 (ISBN)978-91-7797-239-6 (ISBN)
Disputas
2018-06-05, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 5: Manuscript.

Tilgjengelig fra: 2018-05-07 Laget: 2018-04-23 Sist oppdatert: 2022-02-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Mashayekhy Rad, FarshidSpinicci, SilviaNilsson, UlrikaWesterholm, Roger

Søk i DiVA

Av forfatter/redaktør
Mashayekhy Rad, FarshidSpinicci, SilviaNilsson, UlrikaWesterholm, Roger
Av organisasjonen
I samme tidsskrift
Chemosphere

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 385 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf