Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hexatic smectic phase with algebraically decaying bond-orientational order
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 32018 (English)In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 97, no 5, article id 052702Article in journal (Refereed) Published
Abstract [en]

The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.

Place, publisher, year, edition, pages
2018. Vol. 97, no 5, article id 052702
National Category
Chemical Sciences
Research subject
Physical Chemistry
Identifiers
URN: urn:nbn:se:su:diva-157782DOI: 10.1103/PhysRevE.97.052702ISI: 000432979300006PubMedID: 29906887OAI: oai:DiVA.org:su-157782DiVA, id: diva2:1235743
Available from: 2018-07-27 Created: 2018-07-27 Last updated: 2019-06-17Bibliographically approved
In thesis
1. Atomistic simulations of structural and dynamical properties of liquids under geometric constraints
Open this publication in new window or tab >>Atomistic simulations of structural and dynamical properties of liquids under geometric constraints
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The statistical-mechanical description of liquids represents a formidable problem in physic due to the absence of the analytical theory of the liquid state. Atomistic simulations represent a unique source of information in this respect and can be implemented in order address macroscopically measurable liquid properties, including its structure and dynamics, based on the information of the interactions between its constituent molecules. A particularly intriguing challenge is represented by the problem of studying liquids under geometric constraints like surfaces, or where the dimensionality is strongly suppressed like for liquids in 2 dimensions. Experimental measurements cannot access to these regions due to the resolution limitations. In this thesis the study of confined liquids is achieved by particle-based simulations at different level of theory. In particular 3 study cases are considered: the first is the characterization of solid-liquid interfaces. The problem of adsorbing surfaces is treated as a specific case of inorganic surfaces in contact with liquid water. TiO2, chosen as reference material, is studied in its polymorphic structures in aqueous conditions. The surface reactivity and its influence on the liquid structure is solved considering the quantum nature of the system. The mechanism of a solute adsorbing at the interface, considering the interfacial liquid properties, is also addressed. New advanced analysis tools for determining the structural and dynamical properties of water under a surface confinement and the thermodynamic associated to relative adsorption processes are developed. We are confident that this study will represent a mile stone for a systematic study of complex environments as bio-inorganic interfaces. As second case a liquid confined in a 2D surface is studied. Simple liquids having spherically symmetric interaction are very powerful in order to understand the relevant degrees of freedom that governs a certain physical process. Here we expand the definition of 2D hexatic phases to smectic systems in 3D. Finally the self-assembly of a triply periodic mesophase having a Fddd space symmetry group is fully characterized for a simple liquid. This phase can be thought as a geometrical reduction to a two-dimensional separation surface. The possibility of generating such complex network with simple particles, like in colloids, opens the frontiers for the exploration of new materials and applications.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2019. p. 60
Keywords
liquid, contraint, TiO2, surfaces, bio-inorganic, molecular dynamic, ab-initio, tight-binding, DFT, metadynamic, free energy, nanoparticles, water, amino acids, adsorption, mesophases, hexatic, smectic, triply periodic network, Fddd
National Category
Physical Chemistry
Research subject
Physical Chemistry
Identifiers
urn:nbn:se:su:diva-169817 (URN)978-91-7797-757-5 (ISBN)978-91-7797-758-2 (ISBN)
Public defence
2019-09-05, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 6: Manuscript. Paper 7: Manuscript.

Available from: 2019-08-13 Created: 2019-06-17 Last updated: 2019-08-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Agosta, Lorenzo
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Physical review. E
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 144 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf