Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Eastern Mediterranean hydroclimate reconstruction over the last 3600 years based on sedimentary n-alkanes, their carbon and hydrogen isotope composition and XRF data from the Gialova Lagoon, SW Greece
Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory (NEO), Greece.
Stockholm University, Faculty of Science, Department of Geological Sciences.
Stockholm University, Faculty of Science, Department of Geological Sciences.
Show others and affiliations
Number of Authors: 82018 (English)In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 194, p. 77-93Article in journal (Refereed) Published
Abstract [en]

Understanding past hydroclimate variability and related drivers is essential to improve climate forecasting capabilities especially in areas with high climatic sensitivity, such as the Mediterranean. This can be achieved by using a broad spectrum of high resolution, multiple proxy records which can also allow us to assess linkages between regional hydroclimate variability and shifts in the large-scale atmospheric patterns. Here, we present a multiproxy reconstruction of the central-eastern Mediterranean hydro climate changes over the last 3600 years based on a sediment core from the Gialova Lagoon, a shallow coastal ecosystem in SW Peloponnese, Greece. Our combined dataset consists of the distribution and compound-specific carbon and hydrogen isotope (delta C-13 and 8D) composition of n-alkanes, bulk organic matter properties and X-ray fluorescence (XRF) core scanning data. This approach was complemented with a semi-quantitative analysis of plant remains in the core. The results indicate a high contribution of local aquatic vegetation to organic matter. Large delta C-13 variations in predominantly aquatic plant-derived mid-chain alkanes (C23-23) mainly reflect changes in the aquatic plant abundance and their carbon source. Our data suggest that higher delta C-13(23-25) values (up to 19 parts per thousand) largely correspond to expansion of aquatic vegetation during wet and/or cold periods causing carbon-limiting conditions in the water and assimilation of isotopically-enriched bicarbonate by the plants. The 8D records of the individual n-alkanes (C-17 to C-31) exhibit a nearly identical pattern to each other, which implies that they all reflect changes in the source water isotope composition, driven by hydroclimate variability. In addition, the 8D profiles are consistent with the XRF data with both proxies being driven by a common hydroclimate signal. We observe two major shifts from dry and/or warm periods at ca 3600-3000 cal BP and ca 17001300 cal BP to wet and/or cold episodes at ca 3000-2700 cal BP and ca 1300-900 cal BP. The period ca 700-200 cal BP is the wettest and/or coldest in our record and coeval with the Little Ice Age. The climatic fluctuation reported in this study can be explained by the relative dominance of high-latitude (e.g. North Atlantic Oscillation during winters) and the low-latitude atmospheric patterns (Intertropical convergence zone, Subtropical High and the effects of Asian monsoons during summers) which suggests an Atlantic-Mediterranean-Monsoon climate link in this area for the late Holocene.

Place, publisher, year, edition, pages
2018. Vol. 194, p. 77-93
Keywords [en]
n-alkanes, Biomarkers, Stable isotopes, Paleoclimate, Macrophytes, Late Holocene
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-160104DOI: 10.1016/j.quascirev.2018.07.008ISI: 000441487700007OAI: oai:DiVA.org:su-160104DiVA, id: diva2:1249499
Available from: 2018-09-19 Created: 2018-09-19 Last updated: 2019-04-02Bibliographically approved
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Katrantsiotis, ChristosKylander, Malin E.Smittenberg, RienkHättestrand, MartinaNorström, Elin
By organisation
Department of Physical GeographyDepartment of Geological Sciences
In the same journal
Quaternary Science Reviews
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf