Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
J-factors for self-interacting dark matter in 20 dwarf spheroidal galaxies
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 112018 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 4, article id 043017Article in journal (Refereed) Published
Abstract [en]

Dwarf spheroidal galaxies are among the most promising targets for indirect dark matter (DM) searches in gamma rays. The gamma-ray flux from DM annihilation in a dwarf spheroidal galaxy is proportional to the J-factor of the source. The J-factor of a dwarf spheroidal galaxy is the line-of-sight integral of the DM mass density squared times <sigma(ann)v(rel)>/<sigma(ann)v(rel)>(0), where sigma(ann)v(rel) is the DM annihilation cross-section times relative velocity v(rel) = vertical bar v(rel)vertical bar angle brackets denote average over v(rel), and (sigma(ann)v(rel)) is the v(rel)-independent part of sigma(ann)v(rel). If sigma(ann)v(rel) is constant in v(rel), J-factors only depend on the DM space distribution in the source. However, if sigma(ann)v(rel) varies with v(rel), as in the presence of DM self-interactions, J-factors also depend on the DM velocity distribution, and on the strength and range of the DM self-interaction. Models for self interacting DM are increasingly important in the study of the small scale clustering of DM, and are compatible with current astronomical and cosmological observations. Here we derive the J-factor of 20 dwarf spheroidal galaxies from stellar kinematic data under the assumption of Yukawa DM self-interactions. J-factors are derived through a profile likelihood approach, assuming either NavarroFrenk-White (NEW) or cored DM profiles. We also compare our results with J-factors derived assuming the same velocity for all DM particles in the target galaxy. We find that this common approximation overestimates the Mactors by up to 1 order of magnitude. J-factors for a sample of DM particle masses and self-interaction coupling constants, as well as for NFW and cored density profiles, are provided electronically, ready to he used in other projects.

Place, publisher, year, edition, pages
2018. Vol. 98, no 4, article id 043017
National Category
Physical Sciences
Research subject
Physics
Identifiers
URN: urn:nbn:se:su:diva-160084DOI: 10.1103/PhysRevD.98.043017ISI: 000442476700001OAI: oai:DiVA.org:su-160084DiVA, id: diva2:1251106
Available from: 2018-09-26 Created: 2018-09-26 Last updated: 2019-01-29Bibliographically approved
In thesis
1. Dark matter signal normalisation for dwarf spheroidal galaxies: A frequentist analysis of stellar kinematics for indirect Dark Matter searches
Open this publication in new window or tab >>Dark matter signal normalisation for dwarf spheroidal galaxies: A frequentist analysis of stellar kinematics for indirect Dark Matter searches
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Indirect detection strategies of Dark Matter (DM) entail searching for signals of DM annihilation or decay, typically in the form of excess positrons or high-energy photons above the astrophysical background, originating from (inferred) DM-rich environments. Due to their characteristics, dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are considered very promising targets for indirect particle DM identification. To compare model predictions with the observed fluxes of product particles, most analyses of astrophysical data - which are generally performed via frequentist statistics - rely on estimating the abundance of DM by calculating the so-called J-factor. This quantity is usually inferred from the kinematic properties of the stellar population of a dSph, performing a Jeans analysis by means of Bayesian techniques. Previous works have, therefore, combined different statistical methods when analysing astrophysical data from dSphs. This thesis describes the development of a new, fully frequentist approach for constructing the profile likelihood curve for J-factors of dSphs, which can be implemented in indirect DM searches. This method improves upon previous ones by producing data-driven expressions of the likelihood of J, thereby allowing a statistically consistent treatment of the astroparticle and astrometric data from dSphs. Using kinematic data from twenty one satellites of the Milky Way, we derive estimates of their maximum likelihood J-factor and its confidence intervals. The analyses are performed in two different frameworks: the standard scenario of a collisionless DM candidate and the possibility of a self-interacting DM species. In the former case, the obtained J-factors and their uncertainties are consistent with previous, Bayesian-derived values. In the latter, we present prior-less estimates for the Sommerfeld enhanced J-factor of dSphs. In agreement with earlier studies, we find J to be overestimated by several orders of magnitude when DM is allowed is attractively self-interact. In both cases we provide the profile likelihood curves obtained. This technique is validated on a publicly available simulation suite, released by Gaia Challenge, by evaluating its coverage and bias. The results of these tests indicate that the method possesses good statistical properties. Lastly, we discuss the implications of these findings for DM searches, together with future improvements and extensions of this technique.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2019. p. 131
Keywords
dark matter, dwarf galaxies, kinematics and dynamics of galaxies
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-165273 (URN)978-91-7797-560-1 (ISBN)978-91-7797-561-8 (ISBN)
Public defence
2019-03-13, FB52, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

Available from: 2019-02-18 Created: 2019-01-23 Last updated: 2019-02-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Chiappo, AndreaConrad, Jan
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review D: covering particles, fields, gravitation, and cosmology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf