Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coordination Modulation Method To Prepare New Metal-Organic Framework-Based CO-Releasing Materials
Show others and affiliations
Number of Authors: 102018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 37, p. 31158-31167Article in journal (Refereed) Published
Abstract [en]

Aluminum-based metal organic frameworks (MOFs), [Al(OH)(SDC)](n), (H2SDC: 4,4'-stilbenedicarboxylic acid), also known as CYCU-3, were prepared by means of the coordination modulation method to produce materials with different crystal size and morphology. In particular, we screened several reagent concentrations (20-60 mM) and modulator/ligand ratios (0-50), leading to 20 CYCU x_y materials (x: reagent concentration, y = modulator/ligand ratio) with different particle size and morphology. Noteworthy, the use of high modulator/ligand ratio gives rise to a new phase of CYCU-3 (CYCU-3' x_50 series), which was structurally analyzed. Afterward, to test the potential of these materials as CO-prodrug carriers, we selected three of them to adsorb the photo- and bioactive CO-releasing molecule (CORM) ALF794 [Mo(CNCMe2CO2H)(3)(CO)(3)] (CNCMe2CO2H = 2-isocyano-2-methyl propionic acid): (i) CYCU-3 20_0, particles in the nanometric range; (ii) CYCU-3 50_5, bar-type particles with heterogeneous size, and (iii) CYCU-3' 50_50, a new phase analogous to pristine CYCU-3. The corresponding hybrid materials were fully characterized, revealing that CYCU-3 20_0 with the smallest particle size was not stable under the drug loading conditions. Regarding the other two materials, similar ALF794 loadings were found (0.20 and 0.19 CORM/MOF molar ratios for ALF794@CYCU-3 50_5 and ALF794@CYCU-3' 50_50, respectively). In addition, these hybrid systems behave as CO-releasing materials (CORMAs), retaining the photoactive properties of the pristine CORM in both phosphate saline solution and solid state. Finally, the metal leaching studies in solution confirmed that ALF794@CYCU-3' 50_50 shows a good retention capacity toward the potentially toxic molybdenum fragments (7S% of retention after 72 h), which is the lowest value reported for a MOF-based CORMA to date.

Place, publisher, year, edition, pages
2018. Vol. 10, no 37, p. 31158-31167
Keywords [en]
carbon monoxide, metal-organic framework, solid-state materials, guest inclusion, continuous rotation electron diffraction
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161207DOI: 10.1021/acsami.8b11758ISI: 000445439900026PubMedID: 30152684OAI: oai:DiVA.org:su-161207DiVA, id: diva2:1258720
Available from: 2018-10-25 Created: 2018-10-25 Last updated: 2018-10-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Maldonado, Carmen R.Huang, ZhehaoXu, HongyiZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
ACS Applied Materials and Interfaces
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf