Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of altered dry-season length and plant inputs on soluble soil carbon
Show others and affiliations
2018 (English)In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 99, no 10, p. 2348-2362Article in journal (Refereed) Published
Abstract [en]

Soil moisture controls microbial activity and soil carbon cycling. Because microbial activity decreases as soils dry, decomposition of soil organic matter (SOM) is thought to decrease with increasing drought length. Yet, microbial biomass and a pool of water‐extractable organic carbon (WEOC) can increase as soils dry, perhaps implying microbes may continue to break down SOM even if drought stressed. Here, we test the hypothesis that WEOC increases as soils dry because exoenzymes continue to break down litter, while their products accumulate because they cannot diffuse to microbes. To test this hypothesis, we manipulated field plots by cutting off litter inputs and by irrigating and excluding precipitation inputs to extend or shorten the length of the dry season. We expected that the longer the soils would remain dry, the more WEOC would accumulate in the presence of litter, whereas shortening the length of the dry season, or cutting off litter inputs, would reduce WEOC accumulation. Lastly, we incubated grass roots in the laboratory and measured the concentration of reducing sugars and potential hydrolytic enzyme activities, strictly to understand the mechanisms whereby exoenzymes break down litter over the dry season. As expected, extending dry season length increased WEOC concentrations by 30% above the 108 μg C/g measured in untreated plots, whereas keeping soils moist prevented WEOC from accumulating. Contrary to our hypothesis, excluding plant litter inputs actually increased WEOC concentrations by 40% above the 105 μg C/g measured in plots with plants. Reducing sugars did not accumulate in dry senesced roots in our laboratory incubation. Potential rates of reducing sugar production by hydrolytic enzymes ranged from 0.7 to 10 μmol·g−1·h−1 and far exceeded the rates of reducing sugar accumulation (~0.001 μmol·g−1·h−1). Our observations do not support the hypothesis that exoenzymes continue to break down litter to produce WEOC in dry soils. Instead, we develop the argument that physical processes are more likely to govern short‐term WEOC dynamics via slaking of microaggregates that stabilize SOM and through WEOC redistribution when soils wet up, as well as through less understood effects of drought on the soil mineral matrix.

Place, publisher, year, edition, pages
2018. Vol. 99, no 10, p. 2348-2362
Keywords [en]
Birch effect, carbon cycling, dissolved organic carbon, drought stress, exoenzymes, respiration
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-161775DOI: 10.1002/ecy.2473ISI: 000446270400022OAI: oai:DiVA.org:su-161775DiVA, id: diva2:1261516
Available from: 2018-11-07 Created: 2018-11-07 Last updated: 2019-12-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Manzoni, Stefano
By organisation
Department of Physical Geography
In the same journal
Ecology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf