Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Chinese Academy of Sciences, China.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 82018 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 18, p. 11753-11760Article in journal (Refereed) Published
Abstract [en]

Two-dimensional zeolitic materials have drawn increasing attention because of their structural diversity, high accessible surface areas, and potential as precursors to form novel three-dimensional (3D) structures. Here we report a new layered fluoroaluminophosphate, denoted as EMM-9 (ExxonMobil Material #9), synthesized in the same synthesis system as that for a previously reported 3D framework structure EMM-8 (framework-type code: SFO) using an F- medium and 4-(dimethylamino)pyridine (DMAP) as the organic structure-directing agent. The structure of EMM-9 was solved from rotation electron diffraction data and refined against synchrotron powder X-ray diffraction data. The fluoroaluminophosphate layer of EMM-9 is composed of sti composite building units. The DMAP cations are located between the layers. pi-pi interactions between the DMAP cations and hydrogen bonding between the DMAP cations and layers were identified. The layered EMM-9 structure is closely related to the 3D framework structure of EMM-8 and can be transformed to EMM-8 by calcination.

Place, publisher, year, edition, pages
2018. Vol. 57, no 18, p. 11753-11760
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-161071DOI: 10.1021/acs.inorgchem.8b01890ISI: 000445165400052PubMedID: 30156401OAI: oai:DiVA.org:su-161071DiVA, id: diva2:1262918
Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2018-11-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Guo, PengYun, YifengSun, JunliangSu, JieWan, WeiZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf