CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt166",{id:"formSmash:upper:j_idt166",widgetVar:"widget_formSmash_upper_j_idt166",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt167_j_idt169",{id:"formSmash:upper:j_idt167:j_idt169",widgetVar:"widget_formSmash_upper_j_idt167_j_idt169",target:"formSmash:upper:j_idt167:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The Fullness Axiom and exact completions of homotopy categoriesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### National Category

Algebra and Logic
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-162273OAI: oai:DiVA.org:su-162273DiVA, id: diva2:1264883
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt507",{id:"formSmash:j_idt507",widgetVar:"widget_formSmash_j_idt507",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt519",{id:"formSmash:j_idt519",widgetVar:"widget_formSmash_j_idt519",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt530",{id:"formSmash:j_idt530",widgetVar:"widget_formSmash_j_idt530",multiple:true}); Available from: 2018-11-21 Created: 2018-11-21 Last updated: 2019-01-20Bibliographically approved
##### In thesis

We use a category-theoretic formulation of Aczel's Fullness Axiom from Constructive Set Theory to derive the local cartesian closure of an exact completion. As an application, we prove that such a formulation is valid in the homotopy category of any model category satisfying mild requirements, thus obtaining in particular the local cartesian closure of the exact completion of topological spaces and homotopy classes of maps. Under a type-theoretic reading, these results provide a general motivation for the local cartesian closure of the category of setoids. However, results and proofs are formulated solely in the language of categories, and no knowledge of type theory or constructive set theory is required on the reader's part.

1. Exact completion and type-theoretic structures$(function(){PrimeFaces.cw("OverlayPanel","overlay1264924",{id:"formSmash:j_idt827:0:j_idt831",widgetVar:"overlay1264924",target:"formSmash:j_idt827:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1282",{id:"formSmash:j_idt1282",widgetVar:"widget_formSmash_j_idt1282",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1339",{id:"formSmash:lower:j_idt1339",widgetVar:"widget_formSmash_lower_j_idt1339",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1340_j_idt1342",{id:"formSmash:lower:j_idt1340:j_idt1342",widgetVar:"widget_formSmash_lower_j_idt1340_j_idt1342",target:"formSmash:lower:j_idt1340:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});