CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The violent ISM in Haro 11
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0003-4695-6844
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis introduces briefly physical processes operating in the ISM around massive starsand focuses on the impact strong stellar feedback has in creating large-scale structures in a galaxy.Stellar feedback is ubiquitous in star forming galaxies and its effect on the ISM depends strongly on the energy output from the most massive stars (M$\geq$7 \Mo ) and the properties of the surrounding gas. Starburst galaxies are among the most active in producing %galaxies are among the most active galaxies and produce a large amount of massive star clusters %or even super star clusters (SSC; M$_{cl} \geq 10^5$ \Mo ), with stellar populations up to thousands of massive stars. %The most massive stars (M$\geq$30 \Mo ) are lives short, but they In the first 4 Myr of the star clusters evolution, radiative feedback of the most massive stars (M$\geq$30 \Mo ) are at work. Large amount of ionizing photons are released to the ambient medium while radiative pressure compress the surrounding gas. At the same time their stellar winds inject continuously mechanical energy and momentum in their surrounding. This mechanical feedback is then at later ages, until $\sim$ 40 Myrs, maintained by supernova explosions from the less massive stars.

Strong stellar feedback tends to develop large-scale structures such as bubbles, loops, filaments and outflows. These are transient structures and can be seen as imprints of how the released energy is clearing or has cleared paths in the ISM. Strong stellar feedback can have devastating consequences in dwarf galaxies due to their shallow gravitational potential. It can accelerate outflows with velocities larger than their escape velocities. In this way, dwarf galaxies can lose a large fraction of their gas mass, which will be crucial in their subsequent evolution.On the other hand, galactic winds might be responsible to create holes in the ISM, allowing the easily-absorbed ionizing photons (Lyman continuum photons, LyC) to escape the galaxy. Studies on a few LyC leaking galaxies have shown that this mechanisms might have preference from a density-bound scenario, which takes place in galaxies with a highly ionized halo.

In my paper I used deep MUSE observations to analyse the impact strong stellar feedback has in the starburst and Lyman continuum emitting galaxy: Haro 11. The paper presents three emission line diagnostics aiming to analyse the condition of the warm ionized gas in this galaxy, which are the \Ha\ emission, the level of ionization in gas and the presence of fast shocks. These diagnostics are presented in maps of 50 \kms\ bins in a velocity range from -400 to 350 \kms . Haro 11 shows a violent ISM whose warm ionized gas is almost completely shaped by effect of stellar feedback from the most massive star forming regions in the centre. Arcs, shells, outflows paths and galactic scale ionizing cones are imprinted in ISM of Haro 11. Our analysis suggests the presence of a kpc-scale superbubble which might have created galactic holes in the ISM. Beside of that, Haro 11 shows a highly ionized halo. Both mechanisms appear to facilitate the escape of LyC in this galaxy. %Finally, we observe emission at velocities up to thousand \kms\ which could hints to gas escaping the galaxy. Finally the paper presents estimates of the gas mass fraction that could escape the gravitational potential of the galaxy.

Place, publisher, year, edition, pages
Stockholm: Department of Astronomy, Stockholm University , 2018. , p. 55
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
URN: urn:nbn:se:su:diva-163310OAI: oai:DiVA.org:su-163310DiVA, id: diva2:1273277
Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2019-01-07Bibliographically approved

Open Access in DiVA

fulltext(16453 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 16453 kBChecksum SHA-512
8c1abb1672038abf26c767161d3d4abfa6b31624be697f5a76b8416d5bffe26646e097195885071b90a50e9b577862e0f0e4499e37b40da61902408bdf06addc
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Menacho, Veronica
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf