Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantifying Degradative Loss of Terrigenous Organic Carbon in Surface Sediments Across the Laptev and East Siberian Sea
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Vrije Universiteit Amsterdam, Netherlands.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 52019 (English)In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 33, no 1, p. 85-99Article in journal (Refereed) Published
Abstract [en]

Ongoing permafrost thaw in the Arctic may remobilize large amounts of old organic matter. Upon transport to the Siberian shelf seas, this material may be degraded and released to the atmosphere, exported off-shelf, or buried in the sediments. While our understanding of the fate of permafrost-derived organic matter in shelf waters is improving, poor constraints remain regarding degradation in sediments. Here we use an extensive data set of organic carbon concentrations and isotopes (n=109) to inventory terrigenous organic carbon (terrOC) in surficial sediments of the Laptev and East Siberian Seas (LS + ESS). Of these similar to 2.7 Tg terrOC about 55% appear resistant to degradation on a millennial timescale. A first-order degradation rate constant of 1.5 kyr(-1) is derived by combining a previously established relationship between water depth and cross-shelf sediment-terrOC transport time with mineral-associated terrOC loadings. This yields a terrOC degradation flux of similar to 1.7Gg/year from surficial sediments during cross-shelf transport, which is orders of magnitude lower than earlier estimates for degradation fluxes of dissolved and particulate terrOC in the water column of the LS + ESS. The difference is mainly due to the low degradation rate constant of sedimentary terrOC, likely caused by a combination of factors: (i) the lower availability of oxygen in the sediments compared to fully oxygenated waters, (ii) the stabilizing role of terrOC-mineral associations, and (iii) the higher proportion of material that is intrinsically recalcitrant due to its chemical/molecular structure in sediments. Sequestration of permafrost-released terrOC in shelf sediments may thereby attenuate the otherwise expected permafrost carbon-climate feedback. Plain language summary Frozen soils in the Arctic contain large amounts of old organic matter. With ongoing climate change this previously freeze-locked carbon storage becomes vulnerable to transport and decay. Upon delivery to the shallow nearshore seas, it may either be directly degraded to carbon dioxide or methane and thereby fuel further warming or get buried and stored in sediments on the sea floor. Our understanding of the fate of carbon released from permafrost soils is increasing, yet uncertainties remain regarding its degradation in the sediment. Here we constrain how much land-derived organic carbon is deposited in the top layer of the sediment (the part that is prone to transport and exposed to oxygen-stimulated degradation) in the Laptev and East Siberian Seas. We find that more than half of this stock likely resists degradation, while the rest decays relatively slowly. Therefore, the amount of carbon released annually from degradation in surface sediments is much smaller than what was found to be emitted from overlying waters in earlier studies. We suspect that this difference is caused by a combination of mechanisms hindering degradation in sediments and thus conclude that the burial of land-derived carbon may help to dampen the climate impact of thawing permafrost.

Place, publisher, year, edition, pages
2019. Vol. 33, no 1, p. 85-99
Keywords [en]
carbon fluxes, degradation, Arctic shelves, permafrost, marine sediments
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-166612DOI: 10.1029/2018GB005967ISI: 000458243500006OAI: oai:DiVA.org:su-166612DiVA, id: diva2:1299189
Available from: 2019-03-26 Created: 2019-03-26 Last updated: 2019-03-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, AugustGustafsson, Örjan
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Global Biogeochemical Cycles
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf