Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Copper ions induce dityrosine-linked dimers in human but not in murine islet amyloid polypeptide (IAPP/amylin)
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Number of Authors: 72019 (English)In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 510, no 4, p. 520-524Article in journal (Refereed) Published
Abstract [en]

Dysregulation and aggregation of the peptide hormone IAPP (islet amyloid polypeptide, a.k.a. amylin) into soluble oligomers that appear to be cell-toxic is a known aspect of diabetes mellitus (DM) Type 2 pathology. IAPP aggregation is influenced by several factors including interactions with metal ions such as Cu(II). Because Cu(II) ions are redox-active they may contribute to metal-catalyzed formation of oxidative tyrosyl radicals, which can generate dityrosine cross-links. Here, we show that such a process, which involves Cu(II) ions bound to the IAPP peptide together with H2O2, can induce formation of large amounts of IAPP dimers connected by covalent dityrosine cross-links. This cross-linking is less pronounced at low pH and for murine IAPP, likely due to less efficient Cu(II) binding. Whether IAPP can carry out its hormonal function as a cross-linked dimer is unknown. As dityrosine concentrations are higher in blood plasma of DM Type 2 patients - arguably due to disease-related oxidative stress - and as dimer formation is the first step in protein aggregation, generation of dityrosine-linked dimers may be an important factor in IAPP aggregation and thus relevant for DM Type 2 progression.

Place, publisher, year, edition, pages
2019. Vol. 510, no 4, p. 520-524
Keywords [en]
Diabetes, Amyloid disease, Protein aggregation, Protein modification, Redox chemistry, Oxidative stress
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-167587DOI: 10.1016/j.bbrc.2019.01.120ISI: 000460188400006PubMedID: 30737030OAI: oai:DiVA.org:su-167587DiVA, id: diva2:1301629
Available from: 2019-04-02 Created: 2019-04-02 Last updated: 2019-04-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Svantesson, TeodorWallin, CeciliaJarvet, JüriGräslund, AstridWärmländer, Sebastian K. T. S.
By organisation
Department of Biochemistry and Biophysics
In the same journal
Biochemical and Biophysical Research Communications - BBRC
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf