Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Theoretical study of the mechanism of the manganese catalase KatB
Visa övriga samt affilieringar
Antal upphovsmän: 72019 (Engelska)Ingår i: Journal of Biological Inorganic Chemistry, ISSN 0949-8257, E-ISSN 1432-1327, Vol. 24, nr 1, s. 103-115Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The mechanism of the H2O2 disproportionation catalyzed by the manganese catalase (MnCat) KatB was studied using the hybrid density functional theory B3LYP and the quantum chemical cluster approach. Compared to the previous mechanistic study at the molecular level for the Thermus thermophilus MnCat (TTC), more modern methodology was used and larger models of increasing sizes were employed with the help of the high-resolution X-ray structure. In the reaction pathway suggested for KatB using the Large chemical model, the O-O homolysis of the first substrate H2O2 occurs through a -(1):(1) coordination mode and requires a barrier of 10.9kcal/mol. In the intermediate state of the bond cleavage, two hydroxides form as terminal ligands of the dimanganese cluster at the Mn-2(III,III) oxidation state. One of the two Mn(III)-OH- moieties and a second-sphere tyrosine stabilize the second substrate H2O2 in the second-sphere of the active site via hydrogen bonding interactions. The H2O2, unbound to the metals, is first oxidized into HO2<bold> through a proton</bold>-coupled electron transfer (PCET) step with a barrier of 9.5kcal/mol. After the system switches to the triplet surface, the uncoordinated HO2<bold> replaces the product water terminally bound to the Mn</bold>(II) and is then oxidized into O-2 spontaneously. Transition states with structural similarities to those obtained for TTC, where -(2)-OH-/O2- groups play important roles, were found to be higher in energy.

Ort, förlag, år, upplaga, sidor
2019. Vol. 24, nr 1, s. 103-115
Nyckelord [en]
Computational chemistry, Density functional theory, Manganese catalase
Nationell ämneskategori
Biologiska vetenskaper Kemi
Identifikatorer
URN: urn:nbn:se:su:diva-167681DOI: 10.1007/s00775-018-1631-zISI: 000459431600010PubMedID: 30519754OAI: oai:DiVA.org:su-167681DiVA, id: diva2:1301944
Tillgänglig från: 2019-04-03 Skapad: 2019-04-03 Senast uppdaterad: 2019-04-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Siegbahn, Per E. M.
Av organisationen
Institutionen för organisk kemi
I samma tidskrift
Journal of Biological Inorganic Chemistry
Biologiska vetenskaperKemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 2 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf