Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nudging the Arctic Ocean to Quantify Sea Ice Feedbacks
Stockholm University, Faculty of Science, Department of Meteorology .
Number of Authors: 32019 (English)In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 32, no 8, p. 2381-2395Article in journal (Refereed) Published
Abstract [en]

With Arctic summer sea ice potentially disappearing halfway through this century, the surface albedo and insulating effects of Arctic sea ice will decrease considerably. The ongoing Arctic sea ice retreat also affects the strength of the Planck, lapse rate, cloud, and surface albedo feedbacks together with changes in the heat exchange between the ocean and the atmosphere, but their combined effect on climate sensitivity has not been quantified. This study presents an estimate of all Arctic sea ice related climate feedbacks combined. We use a new method to keep Arctic sea ice at its present-day (PD) distribution under a changing climate in a 50-yr CO2 doubling simulation, using a fully coupled global climate model (EC-Earth, version 2.3). We nudge the Arctic Ocean to the (monthly dependent) year 2000 mean temperature and minimum salinity fields on a mask representing PD sea ice cover. We are able to preserve about 95% of the PD mean March and 77% of the September PD Arctic sea ice extent by applying this method. Using simulations with and without nudging, we estimate the climate response associated with Arctic sea ice changes. The Arctic sea ice feedback globally equals 0.28 +/- 0.15 W m(-2) K-1. The total sea ice feedback thus amplifies the climate response for a doubling of CO2, in line with earlier findings. Our estimate of the Arctic sea ice feedback agrees reasonably well with earlier CMIP5 global climate feedback estimates and shows that the Arctic sea ice exerts a considerable effect on the Arctic and global climate sensitivity.

Place, publisher, year, edition, pages
2019. Vol. 32, no 8, p. 2381-2395
Keywords [en]
Arctic, Sea ice, Feedback, Climate sensitivity, Feedback, Climate models
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-168645DOI: 10.1175/JCLI-D-18-0321.1ISI: 000463886900001OAI: oai:DiVA.org:su-168645DiVA, id: diva2:1313751
Available from: 2019-05-06 Created: 2019-05-06 Last updated: 2019-05-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Dekker, Evelien
By organisation
Department of Meteorology
In the same journal
Journal of Climate
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf